K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10

   A  =  4 + 43 + 45 + ... + 499

42A = 43 + 45+ 47 + ... + 4101

16A  -A = (43 + 45 + 47 + .. + 4101)  -(4 + 43 + 45 + ... + 499)

15A = 43 + 45 + 47 + .. + 4101 - 4  - 43 - 45 - .. - 499

15A = (4101 - 4) + (43 - 43) +(45 - 45) + ... + (499 - 499)

15A = 4101 - 4 + 0 + 0 + .. + 0

15A = 4101 - 4

A = \(\dfrac{4^{101}-4}{15}\)

18 tháng 10

Bạn Nam mua bó hoa gồm 2 hoa hồng và 1 hoa ly hết:

   170 000 : 5 = 34 000 (đồng)

Đề bài không đủ dữ liệu để tính 10 hoa hồng và 4 hoa lý em nhé!

         

18 tháng 10

Đáp án D

 

18 tháng 10

            Giải 

Giá trị chữ số 7 ban đâu là: \(\dfrac{7}{100}\)

Giá tị của chữ số 7 lúc sau khi dời dấu phảy là: \(\dfrac{7}{1000}\)

Giá trị chữ số bảy lúc đầu gáp giá trị chữ số 7 lúc sau là:

                \(\dfrac{7}{100}\) : \(\dfrac{7}{1000}\) = 10 (lần)

Chọn D.10

18 tháng 10

A B C H M O N

a/

\(\widehat{ACM}=90^o\) (Góc nt chắn nửa đường tròn)

b/

\(\widehat{ABM}=90^o\) (Góc nt chắn nửa đường tròn)

\(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}=90^o\)

Xét tg vuông ABH

\(\widehat{BAH}+\widehat{ABC}=90^o\)

\(\Rightarrow\widehat{BAH}=\widehat{MBC}\)

\(\widehat{MBC}=\widehat{MAC}\) (Góc nt cùng chắn cung MC)

\(\Rightarrow\widehat{BAH}=\widehat{MBC}=\widehat{MAC}\)

Xét tg OAC có

OA = OC = R => tg OAC cân tại O \(\Rightarrow\widehat{MAC}=\widehat{OCA}\) (Góc ở đáy tg cân)

\(\Rightarrow\widehat{BAH}=\widehat{OCA}\)

c/

\(\widehat{ANM}=90^o\)  (Góc nt chắn nửa đường tròn) \(\Rightarrow MN\perp AH\)

Mà \(BC\perp AH\left(gt\right)\)

=> MN//BC (Cùng vg với AH)

=> BCMN là hình thang

\(sđ\widehat{BAH}=\dfrac{1}{2}sđcungBN\) (Góc nt đường tròn)

\(sđ\widehat{MAC}=\dfrac{1}{2}sđcungCM\) (Góc nt đường tròn)

Mà \(\widehat{BAH}=\widehat{MAC}\left(cmt\right)\)

\(\Rightarrow sđcungBN=sđcungCM\Rightarrow BN=CM\) (trong đường tròn 2 cung có số đo = nhau thì 2 dây trương cung bằng nhau)

=> BCMN là hình thang cân

\(\widehat{ANM}=90^o\) 

18 tháng 10

Gọi \(x>0\left(tấn\right)\) là khối lượng quặng chứa \(75\%\) sắt cần dùng

Khối lượng quặng chứa \(50\%\) sắt sẽ là: \(25-x\left(tấn\right)\)

Khối lượng sắt trong quặng \(75\%:\) \(0,75x\left(tấn\right)\)

Khối lượng sắt trong quặng \(50\%:\) \(0,5\left(25-x\right)\left(tấn\right)\)

Tổng khối lượng sắt trong hỗn hợp cuối cùng: \(25.0,66=16,5\left(tấn\right)\)

Ta có phương trình :

\(0,75x+0,5\left(25-x\right)=16,5\)

\(\Leftrightarrow0,25x=4\)

\(\Leftrightarrow x=16\)

Vậy cần \(16\left(tấn\right)\) quặng chứa \(75\%\) sắt để trộn với \(25-16=9\left(tấn\right)\) quặng chứa \(50\%\) sắt để được \(25\left(tấn\right)\) quặng chứa \(66\%\) sắt

18 tháng 10

\(...N=\left(10-1\right)+\left(10^2-1\right)+\left(10^3-1\right)+...+\left(10^{2018}-1\right)\)

\(N=\left(10+10^2+10^3+...+10^{2018}\right)-2018\)

Đặt \(S=10+10^2+10^3+...+10^{2018}\)

\(\Rightarrow10S=S=10^2+10^3+10^4+...+10^{2019}\)

\(\Rightarrow10S-S=9S=10^{2019}-10\)

\(\Rightarrow S=\dfrac{10^{2019}-10}{9}\)

\(\Rightarrow N=\dfrac{10^{2019}-10}{9}-2018\)

\(N=11...11\left(2018.chữ.số.1\right)-2018\)

\(N=11...1109093\left(2013.chữ.số.1\right)\)

\(N=\dfrac{11...11090930}{10}\left(2014.chữ.số1\right)\)

Vậy trong biểu diễn thập phân của \(N\) có \(2014\) chữ số \(1\)

a: Vì OO'=13cm<5cm+12cm

nên (O) cắt (O') tại hai điểm phân biệt

b: Xét ΔOAO' có \(OA^2+O'A^2=OO'^2\left(5^2+12^2=13^2\right)\)

nên ΔOAO' vuông tại A

=>AO\(\perp\)AO' tại A

Xét (O) có

AO là bán kính

AO\(\perp\)AO' tại A

Do đó: AO' là tiếp tuyến của (O) tại A

Xét (O') có

O'A là bán kính

AO\(\perp\)AO'

Do đó: AO là tiếp tuyến của (O') tại A

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)AC tại A

Xét (O') có

ΔBAD nội tiếp

BD là đường kính

Do đó: ΔBAD vuông tại A

=>BA\(\perp\)AD tại A

Ta có: BA\(\perp\)AD
BA\(\perp\)AC
mà AC,AD có điểm chung là A

nên C,A,D thẳng hàng

b: Gọi H là giao điểm của AB và O'O

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(1)

Ta có: O'A=O'B

=>O' nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra O'O là đường trung trực của AB

=>O'O\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOBO' có \(BO^2+BO'^2=O'O^2\left(3^2+4^2=5^2\right)\)

nên ΔOBO' vuông tại B

Xét ΔOBO' vuông tại B có BH là đường cao

nên \(BH\cdot O'O=BO\cdot BO'\)

=>\(BH=3\cdot\dfrac{4}{5}=2,4\left(cm\right)\)

H là trung điểm của AB

=>\(AB=2\cdot2,4=4,8\left(cm\right)\)

O là trung điểm của BC

=>BC=2*BO=2*4=8(cm)

O' là trung điểm của BD

=>BD=2*BO'=2*3=6(cm)

ΔBCD vuông tại B

=>\(S_{BCD}=\dfrac{1}{2}\cdot BC\cdot BD=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

NV
18 tháng 10

Chắc em ghi nhầm đề, hàm là \(y=x^3+3x^2-4\) đúng ko?