Cho x,y là các số thực thỏa mãn: \(\hept{\begin{cases}x^3+16x=6x^2+9\\9y^2+32=y^2+31y\end{cases}}\)
Tính \(x-y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3-4x^2-8x+8\)
\(=x^3+8-4x^2-8x\)
\(=\left(x+2\right)\left(x^2-2x+4\right)-4x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-2x+4-4x\right)\)
\(=\left(x+2\right)\left(x^2-6x+4\right)\)
\(=\left(x+2\right)\left(x^2-6x+9-5\right)\)
\(=\left(x+2\right)\left[\left(x-3\right)^2-5\right]\)
\(=\left(x+2\right)\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\)
b) \(1+6x-6x^2-x\)
\(=1-x+6x\left(1-x\right)\)
\(=\left(1-x\right)\left(6x+1\right)\)
Ta có: a+b=-5
<=>(a+b)2=25
<=>a2+2ab+b2=25
<=>a2+b2+12=25
<=>a2+b2=17
Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Thay a+b=-5,ab=6,a2+b2=17 vào biểu thức trên ta được:
\(-5\left(17-6\right)=-5.11=-55\)
ta có
\(a+b=5\)
=>\(\left(a+b\right)^2=25\)
=>\(a^2+2ab+b^2=25\)
=>\(a^2+2.6+b^2=25\)
=>\(a^2+12+b^2=25\)
=>\(a^2+b^2=17\)
ta có
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
thay \(a+b=-5;ab=6;a^2+b^2=17\) vào bt trên ,ta có
\(-5\left(17-6\right)=-5.11=-55\)
vậy \(a^3+b^3=-55\)
\(M=2x^2+3x+4\)
\(\Rightarrow2M=4x^2+6x+8=\left(4x^2+6x+\frac{9}{4}\right)+\frac{23}{4}=\left(2x+\frac{3}{2}\right)^2+\frac{23}{4}\)
Vì\(\left(2x+\frac{3}{2}\right)^2\ge0\Rightarrow M=\left(2x+\frac{3}{2}\right)^2+\frac{23}{4}\ge\frac{23}{4}\)
Dấu "=" xảy ra khi x=-3/4
Vậy Mmin=23/4 khi x=-3/4
\(M=2x^2+3x+4\)
\(2M=4x^2+6x+8\)
\(2M=\left(4x^2+6x+\frac{9}{4}\right)+\frac{23}{4}\)
\(2M=\left(2x+\frac{3}{2}\right)^2+\frac{23}{4}\)
Mà \(\left(2x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2M\ge\frac{23}{4}\Leftrightarrow M\ge\frac{23}{8}\)
Dấu "=" xảy ra khi :
\(2x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{4}\)
Vậy ....
Ta có :
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow\)\(\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\)\(\left[x^2-2.x.2+2^2\right]+\left[\left(2y\right)^2-2.2y.1+1^2\right]=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(2y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\2y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)
Vậy \(x=2\) và \(y=\frac{1}{2}\)
Chúc bạn học tốt ~
\(x^2+4y^2-4x-4y+5=0\)
\(\Leftrightarrow\)\(\left(x^2-4x+4\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Vậy
\(\hept{\begin{cases}x^3+16x=6x^2+9\\9y^2+32=y^2+31y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^3-6x^2+16x-9=0\\9y^2-y^2-31y+32=0\end{cases}}\)
Đề sai sao ý
đề bài đúng nhé, mak mk cũng lm đc rồi