K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

\(M=2x^2+3x+4\)

\(\Rightarrow2M=4x^2+6x+8=\left(4x^2+6x+\frac{9}{4}\right)+\frac{23}{4}=\left(2x+\frac{3}{2}\right)^2+\frac{23}{4}\)

\(\left(2x+\frac{3}{2}\right)^2\ge0\Rightarrow M=\left(2x+\frac{3}{2}\right)^2+\frac{23}{4}\ge\frac{23}{4}\)

Dấu "=" xảy ra khi x=-3/4

Vậy Mmin=23/4 khi x=-3/4

2 tháng 7 2018

\(M=2x^2+3x+4\)

\(2M=4x^2+6x+8\)

\(2M=\left(4x^2+6x+\frac{9}{4}\right)+\frac{23}{4}\)

\(2M=\left(2x+\frac{3}{2}\right)^2+\frac{23}{4}\)

Mà  \(\left(2x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2M\ge\frac{23}{4}\Leftrightarrow M\ge\frac{23}{8}\)

Dấu "=" xảy ra khi : 

\(2x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{4}\)

Vậy ....

15 tháng 9 2023

\(x^4\)-2x\(^3\)+3x\(^2\)-2x+2

=(\(x^4\)-2x\(^3\)+x\(^2\))+(2x\(^2\)-2x)+2

=(x\(^2\)-x)\(^2\)+2(x\(^2\)-x)+2

=(x\(^2\)-x)\(^2\)+2(x\(^2\)-x)+1+1

=(x\(^2\)-x+1)\(^2\)+1

=[x\(^2\)-2.x.\(\dfrac{1}{2}\)+\(\left(\dfrac{1}{2}\right)^2\)+\(\dfrac{3}{4}\)]\(^2\)+1

=[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2+1

Ta có:(x-\(\dfrac{1}{2}\))\(^2\)\(\ge0\)

=>(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)\(\ge\dfrac{3}{4}\)

=>[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2\(\ge\dfrac{9}{16}\)

=>[(x-\(\dfrac{1}{2}\))\(^2\)+\(\dfrac{3}{4}\)]2+1\(\ge\dfrac{9}{16}+1\)=\(\dfrac{25}{16}\)

Vậy Min F(x)=\(\dfrac{25}{16}\)khi x-\(\dfrac{1}{2}\)=0=>x=\(\dfrac{1}{2}\)

 

       
15 tháng 9 2023

thắc mắc j hỏi mik nha

a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)

=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)

=>18x-12>=12x+12

=>6x>=24

=>x>=4

b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)

=>\(x^2+2x+1< x^2-2x+1\)

=>4x<0

=>x<0

c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì

\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)

=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)

=>\(2x-3+5x^2-10x< =5x^2-14x+21\)

=>-8x-3<=-14x+21

=>6x<=24

=>x<=4

\(4x^2\)+\(20x\)+\(25\)+\(6x^2\)\(8x\)\(x^2\)-\(22\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(3\)

=\(9x^2\)+\(12x\)+\(4\)-\(1\)

=(\(3x\)+\(2\))2-\(1\)

vì (\(3x\)+\(2\))2 >-0

=>.................-\(1\)>-(-1)

(>- là > hoặc =)

=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)

..................................

25 tháng 4 2020

giải giùm bài này lun nha (3x+4)^4-5

2 tháng 8 2021

\(D=3x^2+2x+1\)

\(D=\left(3x^2+2x+\frac{\sqrt{3}}{3}^2\right)+\frac{2}{3}\)

\(D=\left(\sqrt{3}x+\frac{\sqrt{3}}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)

dấu "=" xảy ra khi và chỉ khi

\(x=\frac{1}{3}\)

\(< =>MIN:D=\frac{2}{3}\)

2 tháng 8 2021

Ta có : \(D=3x^2+2x+1=3\left(x^2+\frac{2}{3}x+\frac{1}{3}\right)=3\left(x^2+\frac{2}{3}x+\frac{1}{9}+\frac{2}{9}\right)=3\left(x+\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)

\(\Rightarrow\)Min D = 2/3

Dấu "=" xảy ra khi x + 1/3 = 0 

\(\Rightarrow x=-\frac{1}{3}\)

Vậy Min D = 2/3 khi x = -1/3 

2 tháng 8 2021

D = 3x+ 2x + 1 = 3( x2 + 2/3x + 1/9 ) + 2/3 = 3( x + 1/3 )2 + 2/3 ≥ 2/3 ∀ x

Dấu "=" xảy ra <=> x = -1/3 . Vậy MinD = 2/3