K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B=14a+19b+6a+b=\left(14a+6a\right)+\left(19b+b\right)\)

\(=20a+20b=20\left(a+b\right)\)

\(=20\cdot23=460\)

4
456
CTVHS
29 tháng 7

`b = 14 × a + 19 × b + 6 × a + b``a + b = 23`

`   = a × (14 + 6) + b × (19 + 1)`

`   = a × 20 + b × 20`

 `  = (a + b) × 20`

`   = 23 × 20`

`   = 460`

Vậy `b = 460`

29 tháng 7

Ta có sơ đồ:

Số lớn: 3 phần và 3 đơn vị

Số bé: 1 phần

Tổng số phần bằng nhau là:

     3 + 1 = 4 (phần)

Số lớn là:

     (51 - 3) : 4 x 3 + 3 = 39

Số bé là:

     (39 - 3) : 3 = 12

30 tháng 7

Tổng số phần bằng nhau:

1 + 3 = 4 (phần)

Số bé là:

(51 - 3) : 4 × 1 = 12

Số lớn là:

51 - 12 = 39

\(2^2+3^2+...+2021^2\)

\(=\left(1^2+2^2+...+2021^2\right)-1\)

\(=\dfrac{2021\cdot\left(2021+1\right)\left(2\cdot2021+1\right)}{6}=1\)

\(=2753594310\)

1: \(5^{x+4}-3\cdot5^{x+3}=2\cdot5^{11}\)

=>\(5^{x+3}\cdot5-3\cdot5^{x+3}=2\cdot5^{11}\)

=>\(2\cdot5^{x+3}=2\cdot5^{11}\)

=>x+3=11

=>x=8

2: \(\dfrac{1}{2}\cdot2^x+4\cdot2^x=9\cdot2^5\)

=>\(2^x\cdot\left(\dfrac{1}{2}+4\right)=9\cdot2^5\)

=>\(2^x\cdot\dfrac{9}{2}=9\cdot2^5\)

=>\(2^x=2^6\)

=>x=6

3: \(9^{2x+1}=27^3\)

=>\(3^{4x+2}=3^9\)

=>4x+2=9

=>4x=7

=>\(x=\dfrac{7}{4}\)

4: \(2^{-1}\cdot2^x+4\cdot2^x=9\cdot2^5\)

=>\(2^x\left(4+\dfrac{1}{2}\right)=9\cdot2^5\)

=>\(2^x\cdot\dfrac{9}{2}=9\cdot2^5\)

=>\(2^x=9\cdot2^5:\dfrac{9}{2}=2^6\)

=>x=6

5: \(\left(2x-1\right)^3=\dfrac{8}{27}\)

=>\(\left(2x-1\right)^3=\left(\dfrac{2}{3}\right)^3\)

=>\(2x-1=\dfrac{2}{3}\)

=>\(2x=\dfrac{2}{3}+1=\dfrac{5}{3}\)

=>\(x=\dfrac{5}{3}:2=\dfrac{5}{6}\)

a: Ta có: \(AE=EB=\dfrac{AB}{2}\)

\(BF=FC=\dfrac{BC}{2}\)

\(DK=KC=\dfrac{DC}{2}\)

mà AB=BC=CD

nên AE=EB=BF=FC=DK=KC

Xét tứ giác AECK có

AE//CK

AE=CK

Do đó: AECK là hình bình hành

b: Xét ΔDCF vuông tại C và ΔCBE vuông tại B có

DC=CB

CF=BE

Do đó: ΔDCF=ΔCBE

=>\(\widehat{DFC}=\widehat{CEB}\)

mà \(\widehat{CEB}+\widehat{BCE}=90^0\)

nên \(\widehat{BCE}+\widehat{DFC}=90^0\)

=>CE\(\perp\)DF

 

Bài 6: Oz là phân giác của góc xOy

=>\(\widehat{xOz}=\dfrac{\widehat{xOy}}{2}=\dfrac{142^0}{2}=71^0\)

Ta có: \(\widehat{xOz}+\widehat{x'Oz}=180^0\)(hai góc kề bù)

=>\(\widehat{x'Oz}+71^0=180^0\)

=>\(\widehat{x'Oz}=109^0\)

Bài 7:

Ta có: Oz là phân giác của góc xOy

=>\(\widehat{xOz}=\widehat{yOz}=\dfrac{\widehat{xOy}}{2}=\dfrac{180^0}{2}=90^0\)

Ot là phân giác của góc xOz

=>\(\widehat{zOt}=\dfrac{\widehat{xOz}}{2}=\dfrac{90^0}{2}=45^0\)

Ov là phân giác của góc yOz

=>\(\widehat{vOz}=\dfrac{90^0}{2}=45^0\)

\(\widehat{vOt}=\widehat{zOv}+\widehat{zOt}=45^0+45^0=90^0\)

28 tháng 7

sửa đề chia hết 31 nhé 

\(S=5+5^2+5^3+...+5^{2019}=5\left(1+5+5^2+5^3\right)+...+5^{2016}\left(1+5+5^2+5^3\right)\)

\(=31\left(5+...+5^{2016}\right)⋮31\)

Vậy ta có đpcm 

a: Xét ΔABC có D,E lần lượt là trung điểm của AC,AB

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{BC}{2}=2\left(cm\right)\)

Xét hình thang BEDC có

M,N lần lượt là trung điểm của EB,DC

=>MN là đường trung bình của hình thang BEDC

=>MN//ED//BC và \(MN=\dfrac{ED+BC}{2}=\dfrac{2+4}{2}=3\left(cm\right)\)

b: Xét ΔBED có MP//ED
nên \(\dfrac{MP}{ED}=\dfrac{BM}{BE}=\dfrac{1}{2}\)

=>\(MP=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)

Xét ΔCED có NQ//ED
nên \(\dfrac{NQ}{ED}=\dfrac{CN}{CD}=\dfrac{1}{2}\)

=>\(NQ=\dfrac{1}{2}ED=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{4}BC\)

\(MN=\dfrac{1}{2}\left(ED+BC\right)=\dfrac{1}{2}\left(\dfrac{1}{2}BC+BC\right)=\dfrac{1}{2}\cdot\dfrac{3}{2}BC=\dfrac{3}{4}BC\)

=>\(MP+PQ+QN=\dfrac{3}{4}BC\)

=>\(PQ=\dfrac{3}{4}BC-\dfrac{1}{4}BC-\dfrac{1}{4}BC=\dfrac{1}{4}BC\)

Do đó:MP=PQ=QN

a: 1141;1241;1341;1441

b: 2;4;8;16