55) \(0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}\)
Mọi người ơi giúp mk câu này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(-1/27) . 3/7 + 5/9 . (-3/7)`
`1/27 . (-3/7) + 5/9 . (-3/7)`
`(1/27 + 5/9) . (-3/7)`
`16/27 . (-3/7)`
`-16/63`
(\(\dfrac{3}{7}\)+(\(-\dfrac{3}{7}\))). \(\left(-\dfrac{1}{27}\right)\).\(\dfrac{5}{9}\)
= 0.\(\left(-\dfrac{1}{27}\right)\).\(\dfrac{5}{9}\)
=0
\(\left(1+2+3+...+2017\right)\times\left(1717\times18-1818\times17\right)\\ =\left(1+2+3+...+2017\right)\times\left(17\times101\times18-18\times101\times17\right)\\ =\left(1+2+3+...+2017\right)\times0\\ =0\)
tìm số tự nhiên a < hoặc = 185, biết rằng khi chia a cho số từ nhiên b thì được thương là 4 và dư 35
Áp dụng BĐT trị tuyệt đối, ta có:
\(\left|x-9\right|+\left|2-x\right|\ge\left|x-9+2-x\right|=\left|7\right|=7\)
Dấu "=" xảy ra khi: \(\left(x-9\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-9\ge0\\2-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-9\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge9\\x\le2\end{matrix}\right.\left(\text{vô lí}\right)\\\left\{{}\begin{matrix}x\le9\\x\ge2\end{matrix}\right.\end{matrix}\right.\\ \Rightarrow2\le x\le9\)
\(\left|x-9\right|+\left|2-x\right|=7\)
Ta có : \(\left|x-9\right|+\left|2-x\right|\ge\left|x-9+2-x\right|=7\)
Nên \(x=0\) là nghiệm phương trình đã cho.
\(A=1+3+3^2+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=40+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=40\left(1+3^4+3^8\right)⋮40\)
Để ý thấy rằng \(1+3+3^2+3^3=40\)
\(A=1+3+3^2+3^3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=40+3^4\times40+3^8\times40\)
\(=40\left(1+3^4+3^8\right)\)
Do đó A chia hết cho 40
\(A=2^2+2^4+...+2^{20}\)
\(=2^2\left(1+2^2+...+2^{18}\right)=4\left(1+2^2+...+2^{18}\right)⋮4\)
\(A=2^2+2^4+...+2^{18}+2^{20}\)
\(=2^2\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)
\(=5\left(2^2+2^6+...+2^{18}\right)⋮5\)
\(0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}+\dfrac{1}{6}-\dfrac{4}{35}\)
=\(\left(0,5+0,4\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{5}{7}-\dfrac{4}{35}\right)\)
= \(0,9+\left(\dfrac{2}{6}+\dfrac{1}{6}\right)+\left(\dfrac{25}{35}-\dfrac{4}{35}\right)\)
= \(0,9+\dfrac{3}{6}+\dfrac{21}{35}\)
= `0,9 +0,5 + 0,6`
= `2`