Chứng minh các bất phương trình sau là bất phương trình bậc nhất một ẩn với mọi giá trị của tham số $m$:
a) $\Big(m^2+\dfrac12\Big)x-1 \le 0$.
b) $-\Big(m^2+m+2\Big)x \le -m+2 \, 024$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left\{{}\begin{matrix}S=x_1+x_2=7\\P=x_1x_2=10\end{matrix}\right.\)
Theo định lý Viet đảo, \(x_1;x_2\) là nghiệm:
\(x^2-7x+10=0\)
Trình bày tương tự câu a ta có:
b.
\(x^2-2x-35=0\)
c.
\(x^2+13x+36=0\)
a/
Gọi x là số phút gọi thỏa mãn đề bài
\(32+\left(x-45\right).0,4=44+0,25x\)
\(\Leftrightarrow32+0,4x-18=44+0,25x\)
\(\Leftrightarrow0,15x=30\Rightarrow x=200\)
b/
+Nếu KH gọi 180 phút trong 1 tháng thì
Số tiền cho gói cước A là \(32+\left(180-45\right).0,4=86\) USD
Số tiền cho gói cước B là \(44+180.0,25=89\) USD
Trong trường hợp này chọn gói cước A có lợi hơn
+ Trường hợp KH gọi 500 phút thì
Số tiền cho gói cước A: \(32+\left(500-45\right).0,4=214\) USD
Số tiền cho gói cước B: \(44+500.0,25=169\) USD
Trong trường hợp này chọn gói cước B có lợi hơn
\(a,\dfrac{x+2}{6}+\dfrac{x+5}{3}>\dfrac{x+3}{5}+\dfrac{x+6}{2}\\ < =>\left(\dfrac{x+2}{6}+1\right)+\left(\dfrac{x+5}{3}+1\right)>\left(\dfrac{x+3}{5}+1\right)+\left(\dfrac{x+6}{2}+1\right)\\ < =>\dfrac{x+8}{6}+\dfrac{x+8}{3}>\dfrac{x+8}{5}+\dfrac{x+8}{2}\\ < =>\dfrac{x+8}{5}+\dfrac{x+8}{2}-\dfrac{x+8}{6}-\dfrac{x+8}{2}< 0\\ < =>\left(x+8\right)\left(\dfrac{1}{5}+\dfrac{1}{2}-\dfrac{1}{6}-\dfrac{1}{3}\right)< 0\)
Mà: `1/5+1/2+1/6-1/3>0`
`=>x+8<0`
`<=>x<-8`
\(\dfrac{x-2}{1007}+\dfrac{x-1}{1008}< \dfrac{2x-1}{2017}+\dfrac{2x-3}{2015}\\ < =>\left(\dfrac{x-2}{1007}-1\right)+\left(\dfrac{x-1}{1008}-1\right)< \left(\dfrac{2x-1}{2017}-1\right)+\left(\dfrac{2x-3}{2015}-1\right)\\ < =>\dfrac{x-1009}{1007}+\dfrac{x-1009}{1008}< \dfrac{2x-2018}{2017}+\dfrac{2x-2018}{2015}\\ < =>\dfrac{x-1009}{1007}+\dfrac{x-1009}{1008}-\dfrac{2\left(x-1009\right)}{2017}-\dfrac{2\left(x-1009\right)}{2015}< 0\\ < =>\left(x-1009\right)\left(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{2}{2017}-\dfrac{2}{2015}\right)< 0\)
Mà: `1/1006+1/1008-2/2017-2/2015>0`
`=>x-1009<0`
`<=>x<1009`
a) \(\dfrac{x+2004}{x+2005}+\dfrac{x+2005}{2006}< \dfrac{x+2006}{2007}+\dfrac{x+2007}{2008}\\ \Rightarrow\left(\dfrac{x+2004}{2005}-1\right)+\left(\dfrac{x+2005}{2006}-1\right)< \left(\dfrac{x+2006}{2007}-1\right)+\left(\dfrac{x+2007}{2008}-1\right)\\ \Rightarrow\dfrac{x-1}{2005}+\dfrac{x-1}{2006}< \dfrac{x-1}{2007}+\dfrac{x-1}{2008}\\ \Rightarrow\dfrac{x-1}{2005}+\dfrac{x-1}{2006}-\dfrac{x-1}{2007}-\dfrac{x-1}{2008}< 0\\ \)
\(\Rightarrow\left(x-1\right)\left(\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}-\dfrac{1}{2008}\right)< 0\left(a\right)\)
Nhận thấy: \(\dfrac{1}{2005}>\dfrac{1}{2007},\dfrac{1}{2006}>\dfrac{1}{2008}\\ \Rightarrow\dfrac{1}{2005}-\dfrac{1}{2007}>0,\dfrac{1}{2006}-\dfrac{1}{2008}>0\\ \Rightarrow\dfrac{1}{2005}+\dfrac{1}{2006}-\dfrac{1}{2007}-\dfrac{1}{2008}>0\)
\(\left(a\right)\Rightarrow x-1< 0\Leftrightarrow x< 1\)
Vậy \(S=\left\{x|x< 1\right\}\)
b) \(\dfrac{x-2}{2002}+\dfrac{x-4}{2000}< \dfrac{x-3}{2001}+\dfrac{x-5}{1999}\\ \Rightarrow\left(\dfrac{x-2}{2002}-1\right)+\left(\dfrac{x-4}{2000}-1\right)< \left(\dfrac{x-3}{2001}-1\right)+\left(\dfrac{x-5}{1999}-1\right)\\ \Rightarrow\dfrac{x-2004}{2002}+\dfrac{x-2004}{2000}< \dfrac{x-2004}{2001}+\dfrac{x-2004}{1999}\\ \Rightarrow\dfrac{x-2004}{2002}+\dfrac{x-2004}{2000}-\dfrac{x-2004}{2001}-\dfrac{x-2004}{1999}< 0\\ \)
\(\Rightarrow\left(x-2004\right)\left(\dfrac{1}{2002}+\dfrac{1}{2000}-\dfrac{1}{2001}-\dfrac{1}{1999}\right)< 0\left(b\right)\)
Nhận thấy: \(\dfrac{1}{2002}< \dfrac{1}{2001},\dfrac{1}{2000}< \dfrac{1}{1999}\Rightarrow\dfrac{1}{2002}-\dfrac{1}{2001}< 0,\dfrac{1}{2000}-\dfrac{1}{1999}< 0\\ \Rightarrow\dfrac{1}{2002}+\dfrac{1}{2000}-\dfrac{1}{2001}-\dfrac{1}{1999}< 0\)
\(\left(b\right)\Rightarrow x-2004>0\Leftrightarrow x>2004\)
`24^2 - 25 + (2x + 5)^2 = 0`
Ta có: `24^2 > 25`
`=> 24^2 - 25 > 0`
Và `(2x + 5)^2 >= 0 ∀x `
`=> 24^2 - 25 + (2x + 5)^2 > 0`
Vậy phương trình đã cho vô nghiệm
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
`(x^2 - 4sqrt{3}x + 12)/(x - 2sqrt{3}) (x ne 2sqrt{3})`
`= (x^2 - 2x . 2sqrt{3} + (2sqrt{3})^2)/(x - 2sqrt{3}) `
`= ( (x -2 sqrt{3} )^2)/(x - 2sqrt{3}) `
`= x - 2sqrt{3}`
`(xsqrt{x} - 1)/(x + sqrt{x} + 1) ` với `x > 0; x ne 1`
`= ((sqrt{x})^3 - 1^3)/(x + sqrt{x} + 1)`
`= ((sqrt{x} -1)(x + sqrt{x} + 1))/(x + sqrt{x} + 1)`
`= sqrt{x} -1`
Gọi số km di chuyển được là x
\(\Rightarrow17+15.x\le300\)
\(\Rightarrow x\le18,9\left(km\right)\)
Vậy hành khách di chuyển được tối đa 18,9km
Gọi \(x>0\left(km\right)\) là số km tiếp theo
Theo đề bài ta có :
\(17000+15000x=300000\)
\(\Leftrightarrow15000x=283000\)
\(\Leftrightarrow x=\dfrac{283000}{15000}\approx19\left(km\right)\)
Vậy với \(300000\) thì hành khách có thể đi tối đa \(19\left(km\right)\)
a) Ta có:
`m^2>=0` với mọi m
`=>m^2+1/2>=1/2>0` với mọi m
`=>` Bất pt: `(m^2+1/2)x-1<=0` có hệ số `a≠0`
`=>`Bất pt luôn là bất pt bậc nhất 1 ẩn với mọi m
b) Ta có:
`m^2+m+2=(m^2+2*m*1/2+1/4)+7/4`
`=(m+1/2)^2+7/4>=7/4>=0` với mọi m
`=>-(m^2+m+2)<=-7/2<0` với mọi m
`=>-(m^2+m+2)≠0` với mọi m
=> Bất pt `-(m^2+m+2)x<=-m+2024` luôn là bpt bậc nhất 1 ẩn