K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(1+2\sqrt{x}+x=\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot1+1^2=\left(\sqrt{x}+1\right)^2\)

b: \(a+2\sqrt{a}+1=\left(\sqrt{a}\right)^2+2\cdot\sqrt{a}\cdot1+1^2=\left(\sqrt{a}+1\right)^2\)

d: \(x-2\sqrt{xy}+y=\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\sqrt{y}+\left(\sqrt{y}\right)^2\)

\(=\left(\sqrt{x}-\sqrt{y}\right)^2\)

e: \(x^2-1=x^2-1^2=\left(x-1\right)\left(x+1\right)\)

f: \(9x^2-1=\left(3x\right)^2-1^2=\left(3x-1\right)\left(3x+1\right)\)

g: \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)

h: \(1-x\sqrt{x}=1^3-\left(\sqrt{x}\right)^3=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)

i: \(x\sqrt{x}+1=\left(\sqrt{x}\right)^3+1^3=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)

j: \(a\sqrt{a}-1=\left(\sqrt{a}\right)^3-1^3=\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)\)

k: \(x\sqrt{x}-8=\left(\sqrt{x}\right)^3-2^3=\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)\)

l: \(x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)

AH
Akai Haruma
Giáo viên
21 tháng 5

Lời giải:

1.

Khi $m=2$ thì PT trở thành:

$x^2-2x-8=0$

$\Leftrightarrow (x+2)(x-4)=0$

$\Leftrightarrow x+2=0$ hoặc $x-4=0$

$\Leftrightarrow x=-2$ hoặc $x=4$

2.

Để pt có 2 nghiệm $x_1,x_2$ phân biệt thì:

$\Delta'=(m-1)^2+m^2+4>0$

$\Leftrightarrow m\in\mathbb{R}$

Áp dụng định lý Viet:

$x_1+x_2=2(m-1)$

$x_1x_2=-m^2-4$

Ta thấy: Do $x_1x_2=-m^2-4<0$ với mọi $m$

$\Rightarrow x_1,x_2$ trái dấu. Mà $x_1< x_2$ nên: $x_1< 0; x_2>0$

Khi đó:

$|x_1|-|x_2|=2|x_1x_2|-6$

$\Leftrightarrow -x_1-x_2 = -2x_1x_2-6$

$\Leftrightarrow -(x_1+x_2)+2x_1x_2+6=0$

$\Leftrightarrow -2(m-1)+2(-m^2-4)+6=0$

$\Leftrightarrow 2m^2+2m=0$

$\Leftrightarrow m(m+1)=0\Leftrightarrow m=0$ hoặc $m=-1$

TH
Thầy Hùng Olm
Manager VIP
21 tháng 5

M (-1;3). để (d) đi qua M thì: 3=-2+b

Vậy: b=5 thì (d) đi qua M

a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{ABN}\) là góc tạo bởi tiếp tuyến BA và dây cung BN

\(\widehat{BMN}\) là góc nội tiếp chắn cung BN

Do đó: \(\widehat{ABN}=\widehat{BMN}\)

Xét ΔABN và ΔAMB có

\(\widehat{ABN}=\widehat{AMB}\)

\(\widehat{BAN}\) chung

Do đó: ΔABN~ΔAMB

=>\(\dfrac{AB}{AM}=\dfrac{AN}{AB}\)

=>\(AB^2=AM\cdot AN\left(1\right)\)

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(2)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(3)

Từ (2),(3) suy ra AO là trung trực của BC

=>AO\(\perp\)BC tại K

Xét ΔABO vuông tại B có BK là đường cao

nên \(AK\cdot AO=AB^2\left(4\right)\)

Từ (1),(4) suy ra \(AK\cdot AO=AN\cdot AM\)

=>\(\dfrac{AK}{AM}=\dfrac{AN}{AO}\)

Xét ΔAKN và ΔAMO có

\(\dfrac{AK}{AM}=\dfrac{AN}{AO}\)

\(\widehat{KAN}\) chung

Do đó: ΔAKN~ΔAMO

=>\(\widehat{AKN}=\widehat{AMO}\)

=>\(\widehat{AKN}=\widehat{OMN}\)

=>\(\widehat{AKN}=\widehat{ONM}\)

Câu 6:

a: \(P=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{2+5\sqrt{x}}{x-4}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x-2\sqrt{x}+x+3\sqrt{x}+2-5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}+2}\)

b: P>1

=>P-1>0

=>\(\dfrac{2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}+2}>0\)

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}>0\)

=>\(\sqrt{x}-2>0\)

=>x>4

Câu 9:

a: Xét tứ giác CEHF có \(\widehat{CEH}+\widehat{CFH}=90^0+90^0=180^0\)

nên CEHF là tứ giác nội tiếp

b: Xét ΔABC có

BF,AE là các đường cao

BF cắt AE tại H

Do đó: H là trực tâm của ΔABC

=>CH\(\perp\)AB

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó: ΔABD vuông tại B

=>BD\(\perp\)BA

mà CH\(\perp\)BA

nên CH//BD

Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó: ΔACD vuông tại C

=>AC\(\perp\)CD

mà BH\(\perp\)AC

nên BH//CD

Xét tứ giác BHCD có

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

21 tháng 5

Bài 3

2b) ∆' = m² - 1.(2m - 1)

= m² - 2m + 1

= (m - 1)² > 0 với mọi m 1

Để phương trình có hai nghiệm phân biệt thỏa mãn x₁ ≤ 0 < x₂ thì:

x₁x₂ ≤ 0

⇔ 2m - 1 ≤ 0

⇔ 2m ≤ 1

⇔ m ≤ 1/2 (nhận)

Vậy m ≤ 1/2 thì phương trình có hai nghiệm thỏa mãn yêu cầu đề bài

21 tháng 5

 Đặt \(BC=x\left(x>5\right)\)

 Trong đường tròn (O) có đường kính CD và \(N\in\left(O\right)\) nên \(\widehat{DNC}=90^o\) hay \(\widehat{BND}=90^o\)

 Vì BD là tia phân giác của \(\widehat{ABC}\) nên \(\widehat{ABD}=\widehat{NBD}\)

 Xét 2 tam giác ABD và NBD vuông tại A và N, có \(\widehat{ABD}=\widehat{NBD}\) và cạnh BD chung nên \(\Delta ABD=\Delta NBD\left(ch-gn\right)\)

 \(\Rightarrow BA=BN=5\) \(\Rightarrow NC=BC-BN=5-x\) 

 Lại có \(\widehat{OMD}=\widehat{ODM}=\widehat{BDA}=\widehat{BDN}\) nên OM//ND (2 góc đồng vị bằng nhau)

 Tam giác CND có O là trung điểm DC, OH//DN và \(H\in NC\) nên H là trung điểm NC \(\Rightarrow HC=\dfrac{NC}{2}=\dfrac{x-5}{2}\)

 Theo định lý Pythagoras, có \(AC=\sqrt{BC^2-AB^2}=\sqrt{x^2-25}\)

 Theo tính chất đường phân giác trong tam giác, ta có:

 \(\dfrac{DA}{AB}=\dfrac{DC}{CB}=\dfrac{AC}{AB+CB}\) \(\Rightarrow\dfrac{DA}{5}=\dfrac{DC}{x}=\dfrac{\sqrt{x^2-25}}{x+5}\)

 \(\Rightarrow DA=\dfrac{5\sqrt{x^2-5}}{x+5}\) và \(DC=\dfrac{x\sqrt{x^2-5}}{x+5}\)

 \(\Rightarrow R_{\left(O\right)}=\dfrac{DC}{2}=\dfrac{x\sqrt{x^2-5}}{2x+10}\)

 Lại có \(DN=AD=\dfrac{5\sqrt{x^2-5}}{x+5}\) 

 \(OH=\dfrac{DN}{2}=\dfrac{5\sqrt{x^2-25}}{2x+10}\) (OH là đường trung bình của tam giác CND)

 \(\Rightarrow MH=MO+OH=\dfrac{x\sqrt{x^2-25}}{2x+10}+\dfrac{5\sqrt{x^2-25}}{2x+10}\)  \(=\dfrac{\sqrt{x^2-25}}{2}\)

 Áp dụng định lý Pythagoras trong tam giác DMC vuông tại M, ta có:

 \(MH^2+HC^2=MC^2\)

 \(\Leftrightarrow\left(\dfrac{\sqrt{x^2-25}}{2}\right)^2+\left(\dfrac{x-5}{2}\right)^2=18\)

 \(\Leftrightarrow\dfrac{x^2-25}{4}+\dfrac{x^2-10x+25}{4}=18\)

 \(\Leftrightarrow2x^2-10x=72\)

 \(\Leftrightarrow x^2-5x-36=0\)

 \(\Leftrightarrow\left[{}\begin{matrix}x=9\left(nhận\right)\\x=-4\left(loại\right)\end{matrix}\right.\)

 Vậy \(BC=9\)

1
23 tháng 5

Câu hỏi của em là gì thế?

a: Xét tứ giác MDBO có \(\widehat{DMO}+\widehat{DBO}=90^0+90^0=180^0\)

nên MDBO là tứ giác nội tiếp

b: Xét (O) có

CA,CM là các tiếp tuyến

Do đó: CA=CM và OC là phân giác của góc MOA

Xét (O) có

DM,DB là các tiếp tuyến

Do đó: DM=DB và OD là phân giác của góc MOB

Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

Xét ΔOCD vuông tại O có OM là đường cao

nên \(OM^2=MC\cdot MD\)

=>\(OM^2=AC\cdot BD\)

c: Xét (O) có

ΔMAB nội tiếp

AB là đường kính

Do đó: ΔMAB vuông tại M

Xét ΔMAB vuông tại M có \(sinBAM=\dfrac{BM}{BA}\)

=>\(\dfrac{BM}{2R}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(BM=R\sqrt{3}\)

=>\(AM=\sqrt{\left(2R\right)^2-\left(R\sqrt{3}\right)^2}=R\)

ΔMAB vuông tại M

=>\(S_{MAB}=\dfrac{1}{2}\cdot MA\cdot MB=\dfrac{1}{2}\cdot R\cdot R\sqrt{3}=\dfrac{R^2\sqrt{3}}{2}\)