cẩm anh nguyễn
Giới thiệu về bản thân
Chứng minh : A =1+1/2+1/3+...+1/100 không phải là số tự nhiên
=> A <1
Ta có:
A=1+1/2+1/3+...+1/100 <1
=>A=1+1/2+1/3+..+1/100<1/1.2+1/2.3+...+1/99.100
A= 1+1/2+1/3+..+1/100< 1-1/2+1/2-1/3+...+1/99-1/100
A=1+1/2+1/3+..+1/100<1-1/100
A=1+1/2+1/3+..+1/100<99/100
Vì 99/100 <1
nên A=1+1/2+1/3+..+1/100<1
=> A=1+1/2+1/3+..+1/100 không phải là số tự nhiên.
đề b là j vậy
a) Vì ABCD là hình bình hành nên AB = CD; AB // CD.
Mà hai điểm B, C lần lượt là trung điểm AE, DF.
Suy ra AE = DF; AB = BE = CD = CF.
Tứ giác AEFD có AE // DF (vì AB // CD); AE = DF (chứng minh trên).
Do đó tứ giác AEFD là hình bình hành.
Tứ giác ABFC có AB // CF (vì AB // CD); AB = CF (chứng minh trên).
Do đó tứ giác ABFC là hình bình hành.
b) Vì hình bình hành AEFD có hai đường chéo AF và DE nên chúng cắt nhau tại trung điểm của mỗi đường, ta gọi giao điểm đó là O.
Hình bình hành AEFD có hai đường chéo AF và BC.
Mà O là trung điểm của AF.
Suy ra O cũng là trung điểm của BC.
Vì là hình bình hành nên ta có:
+ Hai đường chéo và cắt nhau tại nên , .
+ // nên // suy ra (hai góc so le trong).
Xét và có:
$\widehat{O A M} = \widehat{O C N} (chứng minh trên)
(chứng minh trên)
\widehat{C O N} (hai góc đối đỉnh)
Do đó (g.c.g).
Suy ra (hai cạnh tương ứng).
Mặt khác, (chứng minh trên);
; .
Suy ra .
Xét tứ giác có:
// (vì // )
(chứng minh trên)
Do đó, tứ giác là hình bình hành.
a) Vì ABCD là hình bình hành nên AB = CD, AB // CD.
Mà E, F lần lượt là trung điểm của AB, CD nên AE = BE = AB, CF = DF = CD
Do đó AE = BE = CF = DF.
Xét tứ giác AEFD có:
AE // DF (vì AB // CD);
AE = DF (chứng minh trên)
Do đó tứ giác AEFD là hình bình hành.
Xét tứ giác AECF có:
AE // CF (vì AB // CD);
AE = CF (chứng minh trên)
Do đó tứ giác AECF là hình bình hành.
Vậy hai tứ giác AEFD, AECF là những hình bình hành.
b) Vì tứ giác AEFD là hình bình hành nên EF = AD.
Vì tứ giác AECF là hình bình hành nên AF = EC.
Vậy EF = AD, AF = EC.
a) là hình vuông.
b) //
c)
a) là hình chữ nhật.
b) .Tứ giác là hình thang cân
c) điều kiện của để tứ giác là hình vuông.
d)
a) là hình bình hành.
b) thẳng hàng.
c) cần thêm điều kiện gì để tứ giác là hình vuông.
a) Chứng minh là hình thoi.
b) Chứng minh là hình thang cân và
c) kéo dài cắt tại Chứng minh đồng quy.
a , tam giacs AOP= TAM GIACS BOR
B OP=OR=OS=OQ
C PRQS LAF HINHF VUOONG