tính hợp lí tổng sau 1 + 1/2 + 1/4 + 1/8 + ... +1/1024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải
$M.\frac{1}{2}=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{210}+\frac{1}{240}$
$=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{14.15}+\frac{1}{15.16}$
$=\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+...+\frac{15-14}{14.15}+\frac{16-15}{15.16}$
$=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{16}$
$=\frac{1}{4}-\frac{1}{16}=\frac{3}{16}$
$\Rightarrow M=\frac{3}{8}$
Vì $\frac{1}{3}< \frac{3}{8}< \frac{1}{2}$ nên $\frac{1}{3}< M< \frac{1}{2}$
M=1/10 + 1/15 + 1/21 + 1/28 +....+ 1/105 + 1/120 M=1/2*5 + 1/5*3 +1/3*7 + 1/7*4 +....+ 1/7*15 + 1/15*8 M=2(1/2*2*5+1/2*5*3+1/2*3*7+1/2*7*4+....+1/2*7*15+1/2*15*8) M=2(1/4*5+1/5*6+1/6*7+1/7*8+....+1/14*15+1/15*16) M=2(1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+....+1/14-1/15+1/15-1/16) M=2(1/4-1/16) M=2(4/16-1/16) M=2*3/16 M=3/8
Bài 1:
\(E=\frac{1}{6}+\frac{1}{66}+\frac{1}{176}+...+\frac{1}{9894}\\ =\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{97.102}\)
\(\Rightarrow 5E=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+...+\frac{102-97}{97.102}\\ =1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{97}-\frac{1}{102}\\ =1-\frac{1}{102}=\frac{101}{102}\\ \Rightarrow E=\frac{101}{102}:5=\frac{101}{510}\)
Bài 2:
Gọi số học sinh cả lớp là $a$
Số học sinh vắng mặt ban đầu: $\frac{a}{1+6}.1=\frac{a}{7}$ (hs)
Sau khi 2 học sinh ra khỏi lớp thì lớp còn $a-2$ hs
Số hs vắng mặt lúc sau: $\frac{a-2}{1+4}.1=\frac{a-2}{5}$ (hs)
Có:
$\frac{a-2}{5}=\frac{a}{7}+2=\frac{a+14}{7}$
$\Rightarrow 7(a-2)=5(a+14)$
$\Rightarrow 7a-14=5a+70$
$\Rightarrow 2a=84$
$\Rightarrow a=42$ (hs)
Đặt \(A=1+2+2^2+...+2^{2009}\)
=>\(2A=2+2^2+2^3+...+2^{2010}\)
=>\(2A-A=2+2^2+...+2^{2010}-1-2-...-2^{2009}\)
=>\(A=2^{2010}-1\)
\(\dfrac{A}{1-2^{2010}}=\dfrac{2^{2010}-1}{1-2^{2010}}=-1\)
$A=1.21+3.41+...+49.501$ hiển nhiên $>1$ rồi mà bạn. Bạn xem lại đề.
A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{5.6}\) + ... + \(\dfrac{1}{49.50}\)
A < \(\dfrac{1}{1.2}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{5.6}\) + ... + \(\dfrac{1}{49.50}\) +\(\dfrac{1}{2.3}+\dfrac{1}{4.5}+\dfrac{1}{6.7}\)+...+\(\dfrac{1}{48.49}\)
A < \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+\(\dfrac{1}{5.6}\) +\(\dfrac{1}{6.7}\)+.. +\(\dfrac{1}{47.48}\)+ \(\dfrac{1}{48.49}\)+ \(\dfrac{1}{49.50}\)
A < \(\dfrac{1}{1}\)-\(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
A < \(\dfrac{1}{1}\) - \(\dfrac{1}{50}\) < 1 (đpcm)
Lời giải:
$\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{60^2}$
$=\frac{1}{9}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{60^2}
$< \frac{1}{9}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{59.60}$
$= \frac{1}{9}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{60-59}{59.60}$
$=\frac{1}{9}+\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}$
$=\frac{1}{9}+\frac{1}{3}-\frac{1}{60}=\frac{4}{9}-\frac{1}{60}< \frac{4}{9}$
Ta có đpcm.
Lời giải:
$\frac{-7}{x}+\frac{8}{15}=\frac{-1}{20}$
$\frac{-7}{x}=\frac{-1}{20}-\frac{8}{15}=\frac{-7}{12}$
$x=-7: \frac{-7}{12}=12$
-7/x + 8/15 = -1/20
-7/x = -1/20 - 8/15
-7/x = -7/12
=> x = 12
Vậy x = 12 .
\(45\%\cdot x-0,385=-1,685\)
=>\(x\cdot45\%=-1,685+0,385=-1,3\)
=>\(x=-1,3:\dfrac{9}{20}=-1,3\cdot\dfrac{20}{9}=-\dfrac{26}{9}\)
3xy+x-15y-10=0
=>3xy-15y+x-5-5=0
=>3y(x-5)+(x-5)=5
=>(x-5)(3y+1)=5
=>\(\left(x-5;3y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(6;\dfrac{4}{3}\right);\left(10;0\right);\left(4;-2\right);\left(0;-\dfrac{2}{3}\right)\right\}\)
Gọi tổng cần tính là A.
Ta có:
\(A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{1024}\\ A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\\ 2A=2\cdot\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\\ 2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\\ A=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\\ A=2-\dfrac{1}{2^{10}}\)