K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2022

Ptr có `2` nghiệm pb `<=>\Delta' > 0`

                                  `<=>(-1)^2-(m-1) > 0`

                                  `<=>1-m+1 > 0<=>m < 2`

`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=2),(x_1.x_2=c/a=m-1):}`

Có:`x_1 ^2+x_2 ^2-3x_1.x_2=2m^2+|m-3|`

`<=>(x_1+x_2)^2-5x_1.x_2=2m^2+|m-3|`

`<=>2^2-5(m-1)=2m^2+|m-3|`

`<=>4-5m+5=2m^2+|m-3|`

`<=>-2m^2-5m+9=|m-3|`   mà `m < 2=>|m-3|=3-m`

`<=>-2m^2-5m+9=3-m`

`<=>2m^2+4m-6=0`

`<=>m^2+2m-3=0`

`<=>m^2+2m+1=4`

`<=>(m+1)^2=4`

`<=>|m+1|=2`

`<=>m+1=+-2`

`<=>m=1` hoặc `m=-3`

      (t/m)                 (t/m)

Vậy `m in {-3;1}` thì t/m yêu cầu đề bài

13 tháng 6 2022

Kẻ tiếp tuyến Ax của đường tròn (O).

Trong tam giác ABH vuông tại H có đường cao HE nên ta có \(AH^2=AE.AB\)

Tương tự, ta cũng có \(AH^2=AF.AC\), từ đó suy ra \(AE.AB=AF.AC\) hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\) 

Xét \(\Delta AEF\) và \(\Delta ACB\) có \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\left(cmt\right)\) và \(\widehat{A}\) chung

\(\Rightarrow\Delta AEF~\Delta ACB\left(c.g.c\right)\) \(\Rightarrow\widehat{AEF}=\widehat{ACB}\) (1)

Mặt khác, trong đường tròn (O) có \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung, và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) nên ta có \(\widehat{BAx}=\widehat{ACB}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{AEF}=\widehat{BAx}\) \(\Rightarrow EF//Ax\) (2 góc so le trong bằng nhau)

Lại có Ax là tiếp tuyến tại A của (O) nên \(Ax\perp OA\) tại A, dẫn đến \(OA\perp EF\) (đpcm)

17 tháng 6 2022

loading...  loading...  

13 tháng 6 2022

a) Ta có : 

VT : \(\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\dfrac{\left(\sqrt{x^2y}+\sqrt{xy^2}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2=x-y\)  với \(x>0;y>0\)

VT\(=\)VP nên đẳng thức được chứng minh.

b) Vì \(x>0\) nên \(\sqrt{x^3}=\left(\sqrt{x}\right)^3\)

Ta có : 

VT \(\dfrac{\sqrt{x^3}-1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}\right)^3-1^3}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=x+\sqrt{x}+1\) với \(x\ge0;x\ne1\)

VT\(=\)VP nên đẳng thức được chứng minh.

DD
13 tháng 6 2022

\(\dfrac{1}{x-1}+\dfrac{6}{3x+5}=\dfrac{2}{x+2}+\dfrac{1}{x+3}\) (ĐK: \(x\notin\left\{1,-\dfrac{5}{3},-2,-3\right\}\))

\(\Rightarrow\left(3x+5\right)\left(x+2\right)\left(x+3\right)+6\left(x-1\right)\left(x+2\right)\left(x+3\right)=2\left(x-1\right)\left(3x+5\right)\left(x+3\right)+\left(x-1\right)\left(3x+5\right)\left(x+2\right)\)

\(\Leftrightarrow7x^2+24x+17=0\)

\(\Leftrightarrow\left(7x+17\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-17}{7}\\x=-1\end{matrix}\right.\) (thỏa mãn) 

AH
Akai Haruma
Giáo viên
12 tháng 6 2022

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn!

12 tháng 6 2022

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+4x+y^3+3=0\\x^2y^3+y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x^2+2\left(x^2y^3+y\right)+y^3+3=0\left(1\right)\\x^2y^3+y=2x\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x^2+2x^2y^3+2y+y^3+3=0\Leftrightarrow\left(y+1\right)\left(2x^2y^2-2x^2y+y^2+2x-y+3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\Rightarrow x=-1\\2x^2y^2-2x^2y+y^2+2x^2-y+3=0\left(3\right)\end{matrix}\right.\)

\(\left(3\right)\Leftrightarrow2x^2\left(y^2-y+2\right)+y^2-y+3=0\)

\(\Rightarrow a=y^2-y+2=\left(y-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

\(\Delta=0-4.2\left(y^2-y+2\right)\left(y^2-y+3\right)=-8\left(y^2-y+2\right)\left(y^2-y+3\right)\)

\(y^2-y+3=\left(y-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\)

\(\Rightarrow\Delta=-8\left(y^2-y+2\right)\left(y^2-y+3\right)< 0\)

\(\Rightarrow\left(3\right)\) không tồn tại nghiệm (x;y) nào

do đó hpt có  nghiệm x=y=-1

AH
Akai Haruma
Giáo viên
12 tháng 6 2022

Lời giải:
ĐKXĐ: $x\neq -1$

PT $\Leftrightarrow (x-\frac{x}{x+1})^2+4=\frac{5x^2}{x+1}$

$\Leftrightarrow (\frac{x^2}{x+1})^2+4=\frac{5x^2}{x+1}$
Đặt $\frac{x^2}{x+1}=a$ thì pt trở thành:
$a^2+4=5a$

$\Leftrightarrow (a-1)(a-4)=0$

$\Leftrightarrow a=1$ hoặc $a=4$

Nếu $a=1\Leftrightarrow \frac{x^2}{x+1}=1$

$\Rightarrow x^2-x-1=0$

$\Leftrightarrow x=\frac{1\pm \sqrt{5}}{2}$

Nếu $a=4\Leftrightarrow \frac{x^2}{x+1}=4$

$\Rightarrow x^2-4x-4=0$

$\Leftrightarrow x=2\pm 2\sqrt{2}$

 

 

AH
Akai Haruma
Giáo viên
12 tháng 6 2022

Lời giải:
ĐKXĐ: $a>0; a\neq 1$

\(A=\left[\frac{\sqrt{a}(\sqrt{a}-1)}{\sqrt{a}-1}-\frac{\sqrt{a}+1}{\sqrt{a}(\sqrt{a}+1)}\right]:\frac{\sqrt{a}+1}{a\sqrt{a}}\)

\(=(\sqrt{a}-\frac{1}{\sqrt{a}}).\frac{a\sqrt{a}}{\sqrt{a}+1}=\frac{a-1}{\sqrt{a}}.\frac{a\sqrt{a}}{\sqrt{a}+1}=\frac{(\sqrt{a}-1)(\sqrt{a}+1)}{\sqrt{a}}.\frac{a\sqrt{a}}{\sqrt{a}+1}=a(\sqrt{a}-1)\)