K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2022

Ptr có `2` nghiệm pb `<=>\Delta' > 0`

                                  `<=>(-1)^2-(m-1) > 0`

                                  `<=>1-m+1 > 0<=>m < 2`

`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=2),(x_1.x_2=c/a=m-1):}`

Có:`x_1 ^2+x_2 ^2-3x_1.x_2=2m^2+|m-3|`

`<=>(x_1+x_2)^2-5x_1.x_2=2m^2+|m-3|`

`<=>2^2-5(m-1)=2m^2+|m-3|`

`<=>4-5m+5=2m^2+|m-3|`

`<=>-2m^2-5m+9=|m-3|`   mà `m < 2=>|m-3|=3-m`

`<=>-2m^2-5m+9=3-m`

`<=>2m^2+4m-6=0`

`<=>m^2+2m-3=0`

`<=>m^2+2m+1=4`

`<=>(m+1)^2=4`

`<=>|m+1|=2`

`<=>m+1=+-2`

`<=>m=1` hoặc `m=-3`

      (t/m)                 (t/m)

Vậy `m in {-3;1}` thì t/m yêu cầu đề bài

5 tháng 6 2021

Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\)\(\Leftrightarrow4-4\left(m-1\right)>0\)\(\Leftrightarrow2>m\)

Theo viet có:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)

Có \(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m-3\right|\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=2m^2+\left|m-3\right|\)

\(\Leftrightarrow4-5\left(m-1\right)=2m^2+\left|m-3\right|\)

\(\Leftrightarrow2m^2+\left|m-3\right|-9+5m=0\) (1)

TH1: \(m\ge3\)

PT (1) \(\Leftrightarrow2m^2+m-3-9+5m=0\)

\(\Leftrightarrow2m^2+6m-12=0\)

Do \(m\ge3\Rightarrow\left\{{}\begin{matrix}6m-12\ge6>0\\2m^2>0\end{matrix}\right.\) 

\(\Rightarrow2m^2+6m-12>0\) 

=>Pt vô nghiệm

TH2: \(m< 3\)

PT (1)\(\Leftrightarrow2m^2-\left(m-3\right)-9+5m=0\)

\(\Leftrightarrow2m^2+4m-6=0\) \(\Leftrightarrow2m^2-2m+6m-6=0\)

\(\Leftrightarrow2m\left(m-1\right)+6\left(m-1\right)=0\)\(\Leftrightarrow\left(2m+6\right)\left(m-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\) (Thỏa)

Vậy...

NV
10 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-3\end{matrix}\right.\)

Ta có: \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\ge0\)

\(\Rightarrow P_{min}=0\) khi \(x_1+x_2=0\Leftrightarrow m=-1\)

Đề là yêu cầu tìm max hay min nhỉ? Min thế này thì có vẻ là quá dễ

theo dõi em ik idol

25 tháng 3 2022

má tưởng có người trả lời =))))))))

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

Cách ngắn ngọn nhất:

x2−2(m+1)x+4m=0(1)�2−2(�+1)�+4�=0(1)

⇔x2−2x−2mx+4m=0⇔�2−2�−2��+4�=0

⇔x(x−2)−2m(x−2)=0⇔�(�−2)−2�(�−2)=0

⇔(x−2)(x−2m)=0⇔(�−2)(�−2�)=0

⇔[x=2x=2m⇔[�=2�=2�

Phương trình (1) có 2 nghiệm là x=2;x=2m�=2;�=2�. Mặt khác phương trình (1) cũng có 2 nghiệm là x1, x2 nên ta chia làm 2 trường hợp:

TH1x1=2;x2=2m�1=2;�2=2�.

Có 2x1−x2=−2⇒2.2−2m=−2⇔m=32�1−�2=−2⇒2.2−2�=−2⇔�=3

TH2x1=2m;x2=2�1=2�;�2=2

Có 2x1−x2=−2⇒2.(2m)−2=−2⇔m=02�1−�2=−2⇒2.(2�)−2=−2⇔�=0

Vậy m=0 hay m=3

12 tháng 4 2023

Không rõ bạn ạ, mình chẳng thấy gì cả.

24 tháng 3 2022

b1: tìm đk m t/m: Δ>0 ↔ m∈(\(\dfrac{1-\sqrt{10}}{2}\) ; \(\dfrac{1+\sqrt{10}}{2}\))

b2: ➝x1+x2 =-2m-1 (1)

      → x1.x2=m^2-1 (2)

b3: biến đổi : (x1-x2)^2 = x1-5x2

↔ (x1+x2)^2 -4.x1.x2 -(x1+x2) +6.x2=0

↔4.m^2 +4m +1 - 4.m^2 +4 +2m+1+6. x2=0

↔x2= -m-1

B4: thay x2= -m-1 vào (1) → x1 = -m

     Thay x2 = -m-1, x1 = -m vào (2) 

→m= -1

B5: thử lại:

Với m= -1 có pt: x^2 -x =0

Có 2 nghiệm x1=1 và x2=0 (thoả mãn)

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

29 tháng 4 2023

\(x^2-2\left(m+4\right)x+m^2+8m-9=0\left(1\right)\)

Ta giải \(\Delta=[-2\left(m+4\right)]^2-4\left(m^2+8m-9\right)=100>0\forall m\)

suy ra pt có 2 nghiệm phân biệt \(x_1,x_2\forall m\).

Ta có: \(x_1=m-1\)\(x_2=m+1\) (thay \(\Delta\) vào công thức tìm nghiệm phân biệt).

Gọi \(A=\dfrac{x_1^2+x_2^2-48}{x_1^2+x_2^2}\).

\(\Rightarrow A=1-\dfrac{48}{x_1^2+x_2^2}=1-\dfrac{48}{\left(m-1\right)^2+\left(m+1\right)^2}=1-\dfrac{24}{m^2+1}\).

Để biểu thức A nguyên thì \(\dfrac{24}{m^2+1}\) nguyên, suy ra \(m^2+1\inƯ\left(24\right)\).

\(\Rightarrow m^2+1\in\left\{1;2;4;6;8;12;24\right\}\)

\(\Rightarrow m\in\left\{0;\pm1\right\}\) (vì m nhận giá trị nguyên)

Vậy \(m\in\left\{0;\pm1\right\}\) là giá trị cần tìm.

7 tháng 5 2023

Mình chỉnh sửa lại một chút nhé.

\(A=1-\dfrac{24}{m^2+2}\)

\(\Rightarrow...\)\(\Rightarrow\)\(m^2+2\in\left\{1;2;3;4;6;8;12;24\right\}\)

\(\Rightarrow m\in\left\{0;\pm1;\pm2\right\}\)

Vậy...