K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4: \(8^{10}\cdot125^{10}< =2^n\cdot5^n< =20^{16}\cdot5^{16}\)

=>\(1000^{10}< =10^n< =100^{16}\)

=>\(10^{30}< =10^n< =10^{32}\)

=>30<=n<=32

mà n là số tự nhiên

nên \(n\in\left\{30;31;32\right\}\)

Bài 1:

1: \(3^{-2}\cdot3^4\cdot3^n=3^7\)

=>\(3^n\cdot3^2=3^7\)

=>n+2=7

=>n=7-2=5

2: \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

=>\(2^n\left(\dfrac{1}{2}+4\right)=2^5\cdot9\)

=>\(2^n=9\cdot2^5:\dfrac{9}{2}=2^6\)

=>n=6

Bài 2:

1: \(243>=3^n>=9\)

=>\(3^2< =3^n< =3^5\)

=>2<=n<=5

mà n là số tự nhiên

nên \(n\in\left\{2;3;4;5\right\}\)

2: \(2^{n+3}\cdot2^n=144\)

=>\(2^{2n+3}=144\)

=>\(2n+3=log_2144\)

=>\(2n=log_2144-3\)

=>\(n=\dfrac{log_2144-3}{2}\left(loại\right)\)

Bài 3:

\(10^x:5^y=20^y\)

=>\(10^x=20^y\cdot5^y=100^y=10^{2y}\)

=>x=2y

vậy: \(\left(x;y\right)\in\){(2k;k)|\(k\in N\)}

 

ΔABC=ΔDEF

=>\(\widehat{A}=\widehat{D}\)

=>\(\widehat{D}=55^0\)

ΔABC=ΔDEF

=>\(\widehat{B}=\widehat{E}\)

=>\(\widehat{B}=75^0\)

Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>\(\widehat{C}=180^0-55^0-75^0=50^0\)

=>\(\widehat{F}=\widehat{C}=50^0\)

\(\dfrac{11}{3}+\left|x\right|=\dfrac{9}{4}\)

=>\(\left|x\right|=\dfrac{9}{4}-\dfrac{11}{3}=\dfrac{27}{12}-\dfrac{44}{12}=-\dfrac{17}{12}\)

mà \(\left|x\right|>=0\forall x\)

nên \(x\in\varnothing\)

\(\left(\dfrac{1}{2}\right)^{x+2}=16^{4-2x}\)

=>\(2^{-x-2}=2^{4\left(4-2x\right)}\)

=>-x-2=4*(4-2x)

=>-x-2=16-8x

=>-x+8x=16+2

=>7x=18

=>\(x=\dfrac{18}{7}\)

29 tháng 7

Bài 2:

a) \(\dfrac{-7}{-13}=\dfrac{7}{13}\) là số hưu tỉ dương

b) \(\dfrac{2}{-17}=-\dfrac{2}{17}\) là số hưu tỉ âm

c) \(-\dfrac{-6}{5}=\dfrac{6}{5}\) là số hưu tỉ dương

29 tháng 7

Bài 3:

a) \(-2\dfrac{1}{4}=-\left(2+\dfrac{1}{4}\right)=-\dfrac{9}{4}\)

b) \(6\dfrac{2}{3}=6+\dfrac{2}{3}=\dfrac{20}{3}\)

c) \(-3\dfrac{1}{4}=-\left(3+\dfrac{1}{4}\right)=-\dfrac{13}{4}\)

Bài 1:

\(3^{39}< 3^{40}=\left(3^4\right)^{10}=81^{10}\)

\(11^{21}>11^{20}=121^{10}\)

mà 121>81

nên \(11^{21}>3^{39}\)

Bài 2:

\(5^{27}=\left(5^3\right)^9=125^9;2^{63}=\left(2^7\right)^9=128^9\)

mà 125<128

nên \(5^{27}< 2^{63}\)

\(2^{63}=\left(2^9\right)^7=512^7;5^{28}=\left(5^4\right)^7=625^7\)

mà 512<625

nên \(2^{63}< 5^{28}\)

Do đó: \(5^{27}< 2^{63}< 5^{28}\)

28 tháng 7

sửa đề chia hết 31 nhé 

\(S=5+5^2+5^3+...+5^{2019}=5\left(1+5+5^2+5^3\right)+...+5^{2016}\left(1+5+5^2+5^3\right)\)

\(=31\left(5+...+5^{2016}\right)⋮31\)

Vậy ta có đpcm 

a: Xét ΔAPE vuông tại P và ΔAPH vuông tại P có

AP chung

PE=PH

Do đó: ΔAPE=ΔAPH

Xét ΔAQH vuông tại Q và ΔAQF vuông tại Q có

AQ chung

QH=QF

Do đó; ΔAQH=ΔAQF

b: ΔAPE=ΔAPH

=>\(\widehat{PAE}=\widehat{PAH}\)

=>AP là phân giác của góc HAE

ΔAQH=ΔAQF

=>\(\widehat{QAH}=\widehat{QAF}\)

=>AQ là phân giác của góc HAF

\(\widehat{EAF}=\widehat{EAH}+\widehat{FAH}\)

\(=2\widehat{QAH}+2\cdot\widehat{PAH}=2\cdot\left(\widehat{QAH}+\widehat{PAH}\right)\)

\(=2\cdot\widehat{QAP}=180^0\)

=>E,A,F thẳng hàng

Bài 6: Oz là phân giác của góc xOy

=>\(\widehat{xOz}=\dfrac{\widehat{xOy}}{2}=\dfrac{142^0}{2}=71^0\)

Ta có: \(\widehat{xOz}+\widehat{x'Oz}=180^0\)(hai góc kề bù)

=>\(\widehat{x'Oz}+71^0=180^0\)

=>\(\widehat{x'Oz}=109^0\)

Bài 7:

Ta có: Oz là phân giác của góc xOy

=>\(\widehat{xOz}=\widehat{yOz}=\dfrac{\widehat{xOy}}{2}=\dfrac{180^0}{2}=90^0\)

Ot là phân giác của góc xOz

=>\(\widehat{zOt}=\dfrac{\widehat{xOz}}{2}=\dfrac{90^0}{2}=45^0\)

Ov là phân giác của góc yOz

=>\(\widehat{vOz}=\dfrac{90^0}{2}=45^0\)

\(\widehat{vOt}=\widehat{zOv}+\widehat{zOt}=45^0+45^0=90^0\)

b: \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^x\)

=>\(8^x=\dfrac{4\cdot4^5}{3\cdot3^5}\cdot\dfrac{6\cdot6^5}{2\cdot2^5}\)

=>\(8^x=\dfrac{4^6}{2^6}\cdot\dfrac{6^6}{3^6}=2^6\cdot2^6=2^{12}=\left(2^3\right)^4=8^4\)

=>x=4