K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|x-1\right|>=0\forall x;\left(x+y-2\right)^{2024}>=0\forall x,y\)

Do đó: \(\left|x-1\right|+\left(x+y-2\right)^{2024}>=0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-x+2=-1+2=1\end{matrix}\right.\)

Thay x=1;y=1 vào Q, ta được:

\(Q=1^{2024}+1^{2024}=1+1=2\)

 

15 tháng 8

\(\left|x-1\right|+\left(x+y-2\right)^{2024}=0\)

Do \(\left|x-1\right|\ge0;\left(x+y-2\right)^{2024}\ge0,\forall x;y\in R\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

\(Q=x^{2024}+y^{2024}=1^{2024}+1^{2024}=2\)

\(x^5-2x^4+x^3\)

\(=x^3\cdot x^2-x^3\cdot2x+x^3\cdot1\)

\(=x^3\left(x^2-2x+1\right)=x^3\left(x-1\right)^2\)

\(2^2=2\cdot2=4\)

\(3^2=3\cdot3=9\)

\(4^2=4\cdot4=16\)

\(5^2=5\cdot5=25\)

\(6^2=6\cdot6=36\)

\(7^2=7\cdot7=49\)

\(8^2=8\cdot8=64\)

\(9^2=9\cdot9=81\)

\(10^2=10\cdot10=100\)

\(11^2=11\cdot11=121\)

\(12^2=12\cdot12=144\)

15 tháng 8

a)4;9;16;25;36;49;64;81;100;121;144

\(2x^5-50x^3=0\)

=>\(2x^3\left(x^2-25\right)=0\)

=>\(x^3\left(x-5\right)\left(x+5\right)=0\)

=>\(\left[{}\begin{matrix}x^3=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

15 tháng 8

Bổ sung kết luận:

Vậy \(x\) \(\in\) {-5; 0; 5}

 

Độ dài thật của quãng đường là:

4x300000=1200000(mm)=1,2(km)

18 tháng 8

Độ dài thật của quãng đường là:

4x300000=1200000(mm)=1,2(km) 

cho  mình một đúng nha bạn 

Bài 1:

a: \(\dfrac{2}{3}-\dfrac{7}{6}+\dfrac{5}{2}=\dfrac{4}{6}-\dfrac{7}{6}+\dfrac{15}{6}=\dfrac{12}{6}=2\)

b: \(9-2023^0+\sqrt{\dfrac{1}{25}}=9-1+\dfrac{1}{5}=8+\dfrac{1}{5}=8,2\)

c: \(\dfrac{4^{1010}\cdot9^{1010}}{3^{2019}\cdot16^{504}}=\dfrac{4^{1010}}{4^{1008}}\cdot\dfrac{3^{2020}}{3^{2019}}=\dfrac{3}{4^8}\)

Bài 3:

Tổng số tiền phải trả cho 1 bánh cỡ to, 2 bánh cỡ vừa, 1 bánh cỡ nhỏ là:

\(300000+250000\cdot2+200000=1000000\left(đồng\right)\)

=>bác Lan đủ tiền mua

Bài 2:

a: \(x-0,5=\dfrac{5}{6}\)

=>\(x=\dfrac{5}{6}+\dfrac{1}{2}=\dfrac{5}{6}+\dfrac{3}{6}=\dfrac{8}{6}=\dfrac{4}{3}\)

b: \(\left|x-1\right|+\dfrac{1}{2}=\dfrac{3}{2}\)

=>\(\left|x-1\right|=\dfrac{3}{2}-\dfrac{1}{2}=\dfrac{2}{2}=1\)

=>\(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

15 tháng 8

         Giải:

20 phút = \(\dfrac{1}{3}\) giờ

Hai vòi cùng chảy thì mỗi giờ chảy được:

    1 : 3 = \(\dfrac{1}{3}\) (bể)

Trong 4 giờ vòi B chảy được:

    1 - \(\dfrac{1}{3}\) x \(\dfrac{1}{3}\) = \(\dfrac{8}{9}\) (bể)

Trong 1 giờ vòi B chảy được:

    \(\dfrac{8}{9}\) : 4 = \(\dfrac{2}{9}\) (bể)

Trong 1 giờ vòi A chảy được:

    \(\dfrac{1}{3}\) - \(\dfrac{2}{9}\) = \(\dfrac{1}{9}\) (bể)

Một mình vòi A chảy đầy bể sau:

     1 : \(\dfrac{1}{9}\) = 9(giờ)

Một mình vòi B chảy đầy bể sau:

      1 : \(\dfrac{2}{9}\) = 4,5 (giờ)

Đáp số: . .. 

    

 

 

 

 

 

 

Gọi vận tốc xe máy là x(km/h)

(Điều kiện: x>28)

Vận tốc của người đi xe đạp là x-28(km/h)

Tổng vận tốc của hai xe là 156:3=52(km/h)

=>x+x-28=52

=>2x=80

=>x=40(nhận)

Vậy: Vận tốc xe máy là 40km/h

Vận tốc của người đi xe đạp là 40-28=12km/h

ΔAED vuông tại A

=>\(AE^2+AD^2=ED^2\)

ΔAEB vuông tại A

=>\(AE^2+AB^2=EB^2\)

ΔACD vuông tại A

=>\(AC^2+AD^2=CD^2\)

ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

\(CD^2-CB^2=CA^2+AD^2-CA^2-AB^2=AD^2-AB^2\)

\(ED^2-EB^2=AE^2+AD^2-AE^2-AB^2=AD^2-AB^2\)

Do đó: \(CD^2-CB^2=ED^2-EB^2\)

\(x^4+8x=0\)

=>\(x\left(x^3+8\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x^3+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

15 tháng 8

\(x^4\) + 8\(x\) = 0

\(x^{ }\)(\(x^3\) + 8) = 0

\(\left[{}\begin{matrix}x=0\\x^3+8=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-2; 0}