256/112 rut gon phan so
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{n+2}{n-3}\) (n \(\in\)N; n ≠ 3)
Gọi ƯCLN(n +2; n - 3) = d
Ta có: \(\left\{{}\begin{matrix}n+2⋮d\\n-3⋮d\end{matrix}\right.\)
n + 2 - (n - 3) ⋮ d
n + 2 - n + 3 ⋮ d
(n - n) + (2 + 3) ⋮ d
5 ⋮ d
d = 1; 5
Để A tối giản thì d ≠ 5
n - 3 ≠ 5k (k \(\in\) N*)
n ≠ 5k + 3
Vậy để A tối giản thì n ≠ 5k + 3; k \(\in\) N*
\(\dfrac{a}{7}+\dfrac{1}{14}=-\dfrac{1}{b}\)
\(\Rightarrow\dfrac{2a+1}{14}=\dfrac{-1}{b}\)
\(\Rightarrow\left(2a+1\right)b=-14\)
Do 2a+1 luôn lẻ khi a là số nguyên nên ta chỉ cần xét các trường hợp \(2a+1\) là ước lẻ của -14
Ta có bảng sau:
2a+1 | -7 | -1 | 1 | 7 |
b | 2 | 14 | -14 | -2 |
a | -4 | -1 | 0 | 3 |
Vậy \(\left(a;b\right)=\left(-4;-2\right);\left(-1;14\right);\left(0;-14\right);\left(3;-2\right)\)
1 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14
= 1 + (14 + 1) x 14 : 2
= 1 + 15 x 14 : 2
= 1 + 15 x 7
= 1 + 105
= 106
Bài 5:
30 phút = \(\dfrac{1}{2}\) giờ
Thời gian gia đình bạn Tuấn đi từ Hà Nội tới Phan Thiết tới là:
\(\dfrac{13}{4}\) + \(\dfrac{1}{2}\) + \(\dfrac{13}{3}\) = \(\dfrac{97}{12}\) giờ
\(\dfrac{95}{12}\) giờ = 8 giờ 5 phút
b; Gia đình bạn Tuấn đến thành Phố Phan Thiết lúc:
6 giờ + 8 giờ 5 phút = 14 giờ 5 phút
Kl...
Bài 6:
a; -3 - \(\dfrac{2}{5}\) ≤ \(x\) ≤ \(\dfrac{1}{2}\) - \(\dfrac{-3}{4}\)
- \(\dfrac{17}{5}\) ≤ \(x\) ≤ \(\dfrac{5}{4}\)
-3,4 ≤ \(x\) ≤ 1,25
Vì \(x\) là số nguyên nên \(x\) \(\in\) {-3; -2; -1; 0; 1}
a/
Xét \(\Delta ABC\)
AD và BE cắt nhau tại H (gt)
\(\Rightarrow CH\perp AB\) (trong tam giác 3 đường cao đồng quy)
b/ Gọ F là giao của CH với AB ta có
F và D cùng nhìn BH dưới 1 góc \(90^o\) => F và H nằm trên đường tròn đường kính BH => Tứ giác BFHD là tứ giác nội tiếp)
Ta có
\(sđ\widehat{ABC}=\dfrac{1}{2}sđcungFHD\) (góc nt đường tròn)
\(sđ\widehat{FHD}=\dfrac{1}{2}sđcungFBD\) (góc nt đường tròn)
\(\Rightarrow sđ\widehat{ABC}+sđ\widehat{FHD}=\dfrac{1}{2}\left(sđcungFHD+sđcungFBD\right)\)
Mà \(sđcungFHD+sđcungFBD=360^o\)
\(\Rightarrow sđ\widehat{ABC}+sđ\widehat{FHD}=\dfrac{1}{2}.360^o=180^o\)
Mà \(\widehat{CHI}+\widehat{FHD}=\widehat{FHC}=180^o\)
\(\Rightarrow\widehat{CHI}=\widehat{ABC}\) (cùng bù với \(\widehat{FHD}\) ) (1)
Xét (O) có
\(\widehat{ABC}=\widehat{AIC}\) (góc nt đường tròn cùng chắn cung AC) (2)
Từ (1) và (2) \(\Rightarrow\widehat{CHI}=\widehat{AIC}\) => tg CHI cân tại C
c/
Chứng minh tương tự ta cũng có CHK là tg cân tại C
Ta có
\(BE\perp AC\left(gt\right)\Rightarrow AC\perp HK\)
\(\Rightarrow EH=EK\) (trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung tuyến)
=> H đối xứng K qua AC
d/ Gọi G là giao của CO với (O)
Ta có tg CHK cân tại C (cmt)
=> CK=CH
Mà tg CHI cân tại C (cmt) => CH=CI
=> CK=CI => tg CKI cân tại C (3)
Ta có
\(sđ\widehat{CKI}=\dfrac{1}{2}sđcungCI\) (góc nt (O))
\(sđ\widehat{CIK}=\dfrac{1}{2}sđcungCK\) (góc nt (O))
\(\Rightarrow sđcungCI=sđcungCK\)
Ta có
sđ cung CIG = sđ cung CKG \(=180^o\)
=> sđ cung CIG - sđ cung CI = sđ cung CKG - sđ cung CK
=> sđ cung GBI = sđ cung GAK
Ta có
\(sđ\widehat{ICG}=\dfrac{1}{2}sđcungGBI\) (góc nt (O))
\(sđ\widehat{KCG}=\dfrac{1}{2}sđcungGAK\) (góc nt (O))
\(\Rightarrow\widehat{ICG}=\widehat{KCG}\) => CG là phân giác của \(\widehat{KCI}\) (4)
Từ (3) và (4) => \(OC\perp KI\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)
e/
Ta có E và D cùng nhìn CH dưới 1 góc \(90^o\) => CDHE là tứ giác nội tiếp
\(\Rightarrow\widehat{HDE}=\widehat{ECF}\) (góc nt cùng chắn cung HE) (5)
Ta có F và E cùng nhìn BC dưới 1 góc \(90^o\) => BCEF là tứ giác nt
\(\Rightarrow\widehat{ABK}=\widehat{ECF}\) (góc nt cùng chắn cung EF) (6)
Xét (O) có
\(\widehat{ABK}=\widehat{AIK}\) (góc nt cùng chắn cung AK) (7)
Từ (5) (6) (7) \(\Rightarrow\widehat{HDE}=\widehat{AIK}\) mà 2 góc này ở vị trí đồng vị nên
=> ED//KI
Mà \(OC\perp KI\left(cmt\right)\)
\(\Rightarrow OC\perp ED\)
\(\dfrac{256}{112}\) =\(\dfrac{256:16}{112:16}\) = \(\dfrac{16}{7}\)
\(\dfrac{1}{7}\)