K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2022

A B C M N H O P Q

a/ 

Xét tứ giác AMHN có

\(MH\perp AB;AN\perp AB\) => AN//MH

\(AM\perp AC;NH\perp AC\) => AM//NH

=> AMHN là hình bình hành (tứ giác có các cặp cạnh đối //)

Mà \(\widehat{BAC}=90^o\)

=> AMHN là hình chữ nhật => MN=AH (trong HCN hai đường chéo bằng nhau)

b/

Xét tg vuông ABH và tg vuông ABC có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABH đồng dạng với tg ABC (g.g.g)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\Rightarrow AB^2=BH.BC\)

c/ Gọi O là giao của AH với MN có

AH=MN (cmt)

OA=OH; OM=ON

=> OA=OH=OM=ON

Xét tg OMH có OM=OH => OMH cân tại O

\(\Rightarrow\widehat{OMH}=\widehat{OHM}\) (góc ở đáy tg cân)

Mà \(\widehat{PMH}+\widehat{OMH}=90^o;\widehat{PHM}+\widehat{OHM}=90^o\)

\(\Rightarrow\widehat{PMH}=\widehat{PHM}\) => tg PMH cân tại P => PM=PH (1)

Ta có

\(\widehat{PMB}+\widehat{PMH}=90^o;\widehat{PHM}+\widehat{PBM}=90^o\)

\(\Rightarrow\widehat{PMB}=\widehat{PBM}\) => tg PBM cân tại P => PM=PB (2)

Từ (1) và (2) => PH=PB => P là trung điểm của BH

Tương tự ta cũng sẽ c/m được QH=QC

Ta có

\(MP\perp MN;NQ\perp MN\) => MP//NQ => MNQP là hình thang

Mà \(\widehat{PMN}=90^o\) 

=> MNQP là hình thang vuông tại M và N

\(\Rightarrow S_{MNQP}=\dfrac{\left(MP+NQ\right).MN}{2}\)  mà MN=AH (cmt)

\(\Rightarrow S_{MNQP}=\dfrac{\left(MP+NQ\right).AH}{2}\) (3)

Xét tg vuông ABC có

\(BC=\sqrt{AB^2+AC^2}\) (Pitago)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10cm\)

Ta có

\(AB^2=BH.BC\) (cmt) \(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\)

Xét tg vuông ABH có

\(AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-3,6^2}=4,8cm\)

Xét tg vuông BMH có

\(PB=PH\Rightarrow MP=\dfrac{BH}{2}=\dfrac{3,6}{2}=1,8cm\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

Xét tg vuông CNH có

\(QH=QC\left(cmt\right)\Rightarrow NQ=\dfrac{CH}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

\(\Rightarrow NQ=\dfrac{BC-BH}{2}=\dfrac{10-3,6}{2}=3,2cm\)

Thay các giá trị MP; NQ; AH vào (3)

\(\Rightarrow S_{MNQP}=\dfrac{\left(1,8+3,2\right).4,8}{2}=12cm^2\)

 

1 tháng 8 2022

\(\left(x+y+z\right)^3=\left(x+y\right)^3+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+z^3+3xy\left(x+y\right)+3\left(x+y\right)\left(zx+yz+z^2\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(zx+yz+z^2+xy\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(đpcm\right)\)

1 tháng 8 2022

(3x−4)2−2(3x−4)(x−4)+(4−x)2

=(3x−4)2+2(3x−4)(4−x)+(4−x)2

=(3x−4+4−x)2

1 tháng 8 2022

\(x^2+3x+7\)

\(=x^2+2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\dfrac{19}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\forall x\in R\)

Dấu bằng xảy ra khi và chỉ khi  \(x+\dfrac{3}{2}=0\)

\(\Leftrightarrow x=\dfrac{-3}{2}\)

 

1 tháng 8 2022

\(x^2+3x+7=x^2+3x+\dfrac{9}{4}+\dfrac{19}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

- Dấu "=" xảy ra \(\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\).

- Vậy GTNN của biểu thức trên là \(\dfrac{19}{4}\)

DT
2 tháng 8 2022

\(x^2+3x+7=x^2+2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\dfrac{19}{4}\\ =\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu ''='' xảy ra `<=>x=-3/2`

Vậy GTNN là : `19/4<=>x=-3/2`

1 tháng 8 2022

    ​​\(\left(x^2-2x+4\right)\left(x+2\right)-x\left(x-1\right)\left(x+1\right)+3=0\)\(\Leftrightarrow x^2\left(x+2\right)-2x\left(x+2\right)+4\left(x+2\right)-x\left(x-1\right)\left(x+1\right)+3=0\)\(\Leftrightarrow x^3+2x^2-2x^2-4x+4x+8-\left[x^2\left(x+1\right)-x\left(x+1\right)\right]+3=0\)

\(\Leftrightarrow x^3+\left(2x^2-2x^2\right)+\left(-4x+4x\right)+8-\left(x^3+x^2-x^2-x\right)+3=0\)

\(\Leftrightarrow x^3+8-\left(x^3-x\right)+3=0\)

\(\Leftrightarrow x^3+\left(8+3\right)-x^3+x=0\)

\(\Leftrightarrow\left(x^3-x^3\right)+11+x=0\)

\(\Leftrightarrow11+x=0\)

\(\Leftrightarrow x=-11\)

Vậy x = -11

1 tháng 8 2022

em chia câu hỏi ra nhé

31 tháng 7 2022

2x + 1  x 1 ^ 2 = 18

2x +1^2 = 18

2x+ 1 = 18

2x = 18- 1

2x = 17

x = 17 : 2

x = 8 dư 1

1 tháng 8 2022

(2x+1)(1-2x)2=18

(2x+1)(2x+1)2=18

(2x+1)[1(2x+1)]=18

(2x+1)(2x+1)=18

(2x+1)2=18

(2x+1)2=\(\sqrt{18}\)2

2x+1=\(\sqrt{18}\)

2x=3,2

x=1,6

1 tháng 8 2022

a/

Gọi 3 số tự nhiên liên tiếp là (n-1); n; (n+1)

Theo đề bài

n(n+1)-n(n-1)=50

<=>n2+n-n2+n=50

<=> 2n=50=>n=25

Ba số cần tìm là

24;25;26

b/ tương tự câu a