Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(D=-4x^2-3x+2\)
\(\Leftrightarrow D=-4x^2-3x-\dfrac{9}{16}+\dfrac{41}{16}\)
\(\Leftrightarrow D=\dfrac{41}{16}-\left(4x^2+3x+\dfrac{9}{16}\right)\)
\(\Leftrightarrow D=\dfrac{41}{16}-\left(2x+\dfrac{3}{4}\right)^2\le\dfrac{41}{16}\)
\(\Leftrightarrow D_{Max}=\dfrac{41}{16}\)
b) \(A=x^2+x+1\)
\(\Leftrightarrow A=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(\Leftrightarrow A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Leftrightarrow A_{Min}=\dfrac{3}{4}\)
c) \(B=4x^2-3x+2\)
\(\Leftrightarrow B=4x^2-3x+\dfrac{9}{16}+\dfrac{41}{16}\)
\(\Leftrightarrow B=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{41}{16}\ge\dfrac{41}{16}\)
\(\Leftrightarrow B_{Min}=\dfrac{41}{16}\)
Vậy ...
\(E=3x^2-5x+1=3\left(x-\frac{5}{6}\right)^2-\frac{13}{12}\ge-\frac{13}{12}\)
Vậy Min E = -13/12 <=> x = 5/6
\(\frac{4x+1}{x^2+3}=\frac{x^2+4x+4-\left(x^2+3\right)}{x^2+3}=\frac{\left(x+2\right)^2}{x^2+3}-1\ge-1\)
Dấu "=' xảy ra khi x = -2
\(A=x^2-6x+3\)
\(=\left(x^2-6x+9\right)-6\)
\(=\left(x+3\right)^2-6\)
ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)
vậy gtnn của A là -6 tại x=-3
\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
vay .............................................
2/
\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)
vay .........................................
\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)
vay.....................................
nếu có sai mong bạn thông cảm
\(x^2+3x+7=x^2+2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\dfrac{19}{4}\\ =\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu ''='' xảy ra `<=>x=-3/2`
Vậy GTNN là : `19/4<=>x=-3/2`