Chứng tỏ rằng giá trị các biểu thức là 1 số hữu tỉ A =6/71/2 B = 4/15 nhân -25/24 C =0,3 nhân 12,8+0,3 nhân 7,2 D= 1/10 nhân 11+1/11+12+…+1/99 nhân 100 E =4/11+4/121-4/12321/9/11+9/121-9/12321
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Diện tích xung quanh:
\(S_{xq}=\left(5+4\right)\cdot2\cdot3=54\left(dm^2\right)\)
Diện tích toàn phần:
\(S_{tp}=54+5\cdot4\cdot2=94\left(dm^2\right)\)
b) Diện tích xung quanh là:
\(S_{xq}=\left(\dfrac{3}{5}+\dfrac{10}{3}\right)\cdot2\cdot\dfrac{2}{3}\approx5,24\left(m^2\right)\)
Diện tích toàn phần:
\(S_{tp}=5,24+\dfrac{3}{5}\cdot\dfrac{10}{3}\cdot2=9,24\left(m^2\right)\)
Bài 2 :
a) Diện tích xung quanh bể bơi :
\(\left(4+3,5\right).2.1,5=22,5\left(m^2\right)\)
Diện tích đá cần dùng để lát bể bơi :
\(22,5+4.3,5=36,5\left(m^2\right)\)
b) Số tiền cần dùng để mua đá lát bể bơi :
\(36,5.250000=9125000\left(đồng\right)\)
Đáp số...
a, Các góc đồng vị bằng nhau là:
\(\widehat{nAm}\) = \(\widehat{AEx}\); \(\widehat{mAE}\) = \(\widehat{zED}\); \(\widehat{nAB}\) = \(\widehat{AEt}\)
\(\widehat{qAE}\) = \(\widehat{tEz}\); \(\widehat{pBq}\) = \(\widehat{BDE}\); \(\widehat{qBC}\) = \(\widehat{EDy}\); \(\widehat{pBA}\) = \(\widehat{BDx}\); \(\widehat{ABD}\)=\(\widehat{xDy}\)
b, Các góc so le trong:
\(\widehat{ABC}\) = \(\widehat{CDE}\); \(\widehat{mAC}\) = \(\widehat{CEt}\); \(\widehat{BAC}\) = \(\widehat{CED}\); \(\widehat{qBc}\) = \(\widehat{CDx}\)
c, \(\widehat{BAC}\) = \(\widehat{zEt}\) = 450
\(\widehat{CDE}\) = \(\widehat{ABC}\) = 390
d, \(\widehat{BCE}\) = \(\widehat{CDE}\) + \(\widehat{CED}\) (góc ngoài tam giác bằng tổng hai góc trong không kề với nó.
\(\widehat{CED}\) = \(\widehat{zEt}\) = 450 (hai góc đối đỉnh)
\(\widehat{BCE}\) = 390 + 450 = 840
Bài 1:
a) \(3^7:3^5-\left(\dfrac{5}{17}\right)^0=3^{7-5}-1=3^2-1=9-1=8\)
b) \(\left(\dfrac{5}{2}\right)^{13}:\left(\dfrac{1}{2}+2\right)^3\)
\(=\left(\dfrac{5}{2}\right)^{13}:\left(\dfrac{5}{2}\right)^3\)
\(=\left(\dfrac{5}{2}\right)^{10}\)
c) \(8.\left(\dfrac{1}{4}\right)^3+\left(\dfrac{2}{27}\right)^0-\dfrac{1}{8}\)
\(=8.\dfrac{1}{64}+1-\dfrac{1}{8}\)
\(=\dfrac{1}{8}+1-\dfrac{1}{8}\)
\(=1\)
Bài 2:
a) \(\dfrac{3^4.4^4}{6^4}=\dfrac{3^4.\left(2^2\right)^4}{\left(2.3\right)^4}=\dfrac{3^4.2^8}{2^4.3^4}=\dfrac{2^8}{2^4}=2^4=16\)
b) \(\dfrac{15^3}{10^3}=\dfrac{\left(3.5\right)^3}{ \left(2.5\right)^3}=\dfrac{3^3.5^3}{2^3.5^3}=3^3:2^3=\dfrac{27}{8}\)
c) \(\dfrac{4^2.12^5}{9^2.2^{10}}=\dfrac{\left(2^2\right)^2.\left[3.\left(2^2\right)\right]^5}{\left(3^2\right)^2.2^{10}}=\dfrac{2^4.3^5.2^{10}}{3^4.2^{10}}=2^4.3=16.3=48\)
d) \(\dfrac{6^2+5.2^2+4}{15}=\dfrac{\left(2.3\right)^2+5.2^2+2^2}{15}=\dfrac{2^2.3^2+5.2^2+2^2}{15}=\dfrac{2^2\left(3^2+5+1\right)}{15}=\dfrac{2^2.15}{15}=2^2=4\)
Bài 3:
a) \(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.\left(-1\right)^5}{\left(\dfrac{2}{5}\right)^2.\left(\dfrac{-5}{12}\right)^2}\)
\(=\dfrac{\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.-1}{\left[\dfrac{2}{5}.\left(\dfrac{-5}{12}\right)\right]^2}\)
\(=\dfrac{\left(\dfrac{2}{3}\right)^3. \left(\dfrac{-3}{4}\right)^2.-1}{\left(\dfrac{-1}{6}\right)^2}\)
\(=\left(\dfrac{2}{3}\right)^3.\left[\left(\dfrac{-3}{4}\right).-6\right]^2.-1\)
\(=\left(\dfrac{2}{3}\right)^3.\left(\dfrac{9}{2}\right)^2.-1\)
\(=\left(\dfrac{2}{3}\right)^2.\dfrac{2}{3}.\left(\dfrac{9}{2}\right)^2.-1\)
\(=\left(\dfrac{2}{3}.\dfrac{9}{2}\right)^2.\dfrac{2}{3}.-1\)
\(=9.\dfrac{2}{3}.-1\)
\(=6.-1=-6\)
b) \(\dfrac{6^6+6^3.3^3+3^6}{-73}=\dfrac{\left(2.3\right)^6+\left(2.3\right)^3.3^3+3^6}{-73}=\dfrac{2^6.3^6+2^3.3^3.3^3+3^6}{-73}=\dfrac{2^6.3^6+2^3.3^6+3^6}{-73}=\dfrac{3^6\left(2^6+2^3+1\right)}{-73}=\dfrac{3^6.73}{-73}=\dfrac{3^6}{-1}=\left(-3\right)^6\)
\(#Wendy.Dang\)
Lần sau bnn gửi từng bài thôi nha, chứ như vầy nhiều quá thì làm không nổi mất. đánh máy nãy giờ lú luôn gòi nè :))
a) \(5^6:5^5+\left(\dfrac{4}{9}\right)^0=5^{6-5}+1=5+1=6\)
b) \(\left(\dfrac{3}{7}\right)^{21}:\left(1-\dfrac{40}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^6\)
\(=\left(\dfrac{3}{7}\right)^{21-6}=\left(\dfrac{3}{7}\right)^{15}\)
c) \(\left(\dfrac{2}{3}\right)^3-\left(\dfrac{-52}{3}\right)^0+\dfrac{4}{9}\)
\(=\dfrac{8}{27}-1+\dfrac{4}{9}\)
\(=\dfrac{8-27+12}{27}=-\dfrac{7}{27}\)
\(a)5^6:5^5+\left(\dfrac{4}{9}\right)^0=5^1+1=6\)
\(b,\left(\dfrac{3}{7}\right)^{21}:\left(1-\dfrac{40}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{49-40}{49}\right)^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^3=\left(\dfrac{3}{7}\right)^{21}:[\left(\dfrac{3}{7}\right)^2]^3\)
\(=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^6=\left(\dfrac{3}{7}\right)^{21-6}\)
\(=\left(\dfrac{3}{7}\right)^{15}\)
\(c,3.\left(\dfrac{2}{3}\right)^3-\left(\dfrac{-52}{3}\right)^0+\dfrac{4}{9}\)
\(=3.\dfrac{8}{27}-1+\dfrac{4}{9}\)
\(=\dfrac{8}{9}-1+\dfrac{4}{9}\)
\(=\dfrac{8-9+4}{9}=\dfrac{1}{3}\)
Thể tích bể bơi là: 12 x 10 x 1,2 = 144 (m3)
Gọi lượng nước mà mỗi máy bơm cần bơm vào bể lần lượt là:
\(x;y;z\) (m3); \(x;y;z>0\)
Theo bài ra ta có: \(\dfrac{x}{7}=\dfrac{y}{8}=\dfrac{z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{8}=\dfrac{z}{9}\) = \(\dfrac{x+y+z}{7+8+9}\) = \(\dfrac{144}{24}\) = 6
\(x\) = 6 x 7 = 42
y = 6 x 8 = 48
z = 6 x 9 = 54
Kết luận lượng nước mà mỗi máy cần bơm để hồ đầy theo thứ tự lần lượt là:
42 m3; 48 m3; 54 m3
Thể tích bể:
12 . 10 . 1,2 = 144 (m³)
Gọi x (m³), y (m³), z (m³) lần lượt là số m³ mà máy bơm thứ nhất, máy bơm thứ hai và máy bơm thứ ba phải bơm (x, y, z > 0)
Ta có: x + y + z = 144 (m³)
Do lượng nước bơm được của ba máy tỉ lệ với 7; 8; 9 nên:
x/7 = y/8 = z/9
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/7 = y/8 = z/9 = (x + y + z)/(7 + 8 + 9) = 144/24 = 6
x/7 = 6 ⇒ x = 7.6 = 42 (nhận)
y/8 = 6 ⇒ y = 8.6 = 48 (nhận)
z/9 = 6 ⇒ z = 9.6 = 54 (nhận)
Vậy số m³ nước ba máy bơm để đầy bể lần lượt là: 42 m³, 48 m³, 54 m³