K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12

Ai co trai nay trong blox fruit ko

1 tháng 12

Tui

 

28 tháng 10 2018

=-4x^2-9y^2-4(x^2-2xy+y^2)-8xy

=4x^2-9y^2-4x^2+8xy-4y^2-8xy

= -13y^2

28 tháng 10 2018

đề bài như thế nào bn

4 tháng 10 2015

<=>4x2+8xy+4y2 +x2-2x+1+y2+2y+1=0

<=>(2x+2y)2+(x-1)2+(y+1)2=0

<=>(2x+2y)2=0 và (x-1)2=0 và (y+1)2=0

*(x-1)2=0

<=> x-1=0

<=>x=1

*(y+1)2

<=> y+1=0

<=> y=-1

Vậy x=1;y= -1

1 tháng 1 2020

Ta có: x^2+2y^2-2xy+2x+2-4y=0

=> x^2 -2xy+y^2+ 2x-2y+1+y^2-2y+1=0

=> (x-y)^2+ 2(x-y)+1 + (y-1)^2=0

=> (x-y+1)^2+(y-1)^2=0

mà (x-y+1)^2> hoặc=0 với mọi x;y

(y-1)^2> hoặc=0 với mọi x;y

nên x-y+1=0;y-1=0

=> y=1; x=0

15 tháng 12 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow4x^2+x^2+4y^2+y^2+8xy-2x+2y+1+1=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

Thay \(x=1\)\(y=-1\) vào biểu thức \(M=\left(x+y\right)^{2007}+\left(x-2\right)^{2008}+\left(y+1\right)^{2009}\) ta được:

\(\left[1+\left(-1\right)\right]^{2007}+\left(1-2\right)^{2008}+\left[\left(-1\right)+1\right]^{2009}\)

\(=0^{2007}+\left(-1\right)^{2008}+0^{2009}\)

\(=0+1+0\)

\(=1\)

Vậy giá trị của biểu thức \(M\) tại ​\(x=1\)\(y=-1\)\(1\)

9 tháng 9 2017

Có:                                                                      \(5x^2+5y^2+8xy+2y-2x+2=0\)

                                              \(4x^2+x^2+4y^2+y^2+8xy+2y-2x+1+1=0\)

                             \(\left(y^2+2y+1\right)+\left(x^2-2x+1\right)+\left(4x^2+8xy+4y^2\right)=0\)

\(\left(y^2+2y.1+1^2\right)+\left(x^2-2x.1+1^2\right)+\left[\left(2x\right)^2+2.2x.2y+\left(2y\right)^2\right]=0\)

                                                                  \(\left(y+1\right)^2+\left(z-1\right)^2+\left(2x+2y\right)^2=0\left(1\right)\)

\(\left(y+1\right)^2\ge0\)với mọi y

    \(\left(x-1\right)^2\ge0\)với mọi x

\(\left(2x+2y\right)^2\ge0\)với mọi x,y

Từ (1)

=>\(\hept{\begin{cases}\left(y+1\right)^2=0\\\left(x-1\right)^2=0\\\left(2x+2y\right)^2=0\end{cases}\hept{\begin{cases}y+1=0\\x-1=0\\2x+2y=0\end{cases}\hept{\begin{cases}y=-1\\x=1\\2.\left(-1\right)+2.1=0\end{cases}=>y=-1;x=1}}}\)

Vậy y=-1;x=1

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

mình nha

20 tháng 5 2015

<=>4x2+8xy+4y2 +x2-2x+1+y2+2y+1=0

<=>(2x+2y)2+(x-1)2+(y+1)2=0

<=>(2x+2y)2=0 và (x-1)2=0 và (y+1)2=0

*(x-1)2=0

<=> x-1=0

<=>x=1

*(y+1)2

<=> y+1=0

<=> y=-1

Vậy x=1;y= -1

30 tháng 6 2016

 5x^2+5y^2+8xy-2x+2y+2 = 0 
<=>4x^2 + 8xy + 4y^2 + x^2 - 2x + 1 + y^2 + 2y + 1 = 0 
<=> 4(x + y)^2 + (x - 1)^2 + (y + 1)^2 = 0 (1) 
mà 4(x + y)^2 >= 0;(x - 1)^2 >=0; (y + 1)^2 >= 0 
=> Để (1) có nghiệm thì đồng thời x + y = 0; x - 1 = 0; y + 1 = 0 
<=> x = 1, y = -1.

2 tháng 12 2017

Ta có 5x2+5y2+8xy-2x+2y+2=0

=> (4x2+8xy+4y2)+(x2-2x+1)+(y2+2y+1)=0

=> (2x+2y)2+(x-1)2+(y+1)2=0

=> (2x+2y)2=(x-1)2=(y+1)2=0

=> x=1 và y=-1

=> M=(x+y)2015+(x-2)2016+(y+1)2017

=(1-1)2015+(1-2)2016+(-1+1)2017

= 0+(-1)2016+0

=1

12 tháng 12 2017

tính M=(x+y)2015+(x-2)2016+(y+1)2017

Ta có

5x^2 + 5y^2 + 8xy - 2x + 2y + 2= 0

<=> 4x^2 + 8xy + 4y^2 + x^2 - 2x + 1 + y^2 + 2y + 1 = 0

<=> (4x^2 + 8xy + 4y^2) + (x^2 - 2x + 1) + (y^2 + 2y + 1) =0

<=> (2x + 2y)^2 + (x - 1)^2 + (y + 1)^2 =0

<=> 2x + 2y= 0 hoặc x - 1= 0 và y + 1= 0

<=> x=1 và y= - 1 thay x=1, y= - 1 vào biểu thức M ta có

M= (1 - 1)^2015 + (1 - 2)^2016 + ( - 1 + 1)^2017

= 0 + - 1^2016 + 0 = 1

\(16x^2+y^2+4y-16x-8xy\)

\(=\left(4x-y\right)^2-4\left(4x-y\right)\)

\(=\left(4x-y\right)\left(4x-y-4\right)\)

8 tháng 10 2017

a) \(16x^2+y^2+4y-16x-8xy\)

\(=\left(4x\right)^2-8xy+y^2+4\left(y-4x\right)\)

\(=\left(4x-y\right)^2+4\left(y-4x\right)\)

\(=\left(y-4x\right)^2+4\left(y-4x\right)=\left(y-4x\right)\left(y-4x+4\right)\)

24 tháng 7 2016

1) x(x - y) + x - y

= x.(x - y) + (x - y)

= (x - y).(x + 1)

2) Câu b sai đề nên mk sửa lại nha

2x3 + x2 - 8x - 4

= (2x3 + x2) - (8x + 4)

= x2.(2x + 1) - 4.(2x + 1)

= (2x + 1).(x2 - 4)

= (2x + 1).(x - 2).(x + 2)

3) 2x- 8xy - 5x + 20y

= (2x2 - 5x) - (8xy - 20y)

= x.(2x - 5) - 4y.(2x - 5)

= (2x - 5).(x - 4y)

24 tháng 7 2016

1) ( x+1) ( x-y)

2) 2x3 + x2 - 8x - 4= 2x3 - 4x2 + 5x2 - 10x + 2x - 4 = 2x2 ( x-2) + 5x( x -2) + 2(x -2)

=( 2x2 + 5x + 2)( x-2)

=( 2x2 + 4x + x + 2)( x-2)

=[ 2x( x+2) + ( x-2)]( x-2)

= ( 2x +1)( x+2)( x-2)

3) 2x2 - 8xy - 5x + 20y

= 2x ( x - 4y) - 5( x-4y)= ( 2x-5)(x-4y)