K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

Đáp án A

TXĐ: D= ℝ

y = m x 3 - x 2 + 2 x + m - 1

⇒ y ' = 3 m x 2 - 2 x + 2

Để y = m x 3 - x 2 + 2 x + m - 1 đồn biến trên khoảng - 2 ; 0 thì

y ' = 3 m x 2 - 2 x + 2 > 0   ∀ x ∈ - 2 ; 0

hay  2 x - 2 3 x 2 < m   ∀ x ∈ - 2 ; 0

xét  f x = 2 x - 2 3 x 2 có

f ' x = 2 . 3 x 2 - 6 x 2 x - 2 9 x 4 = - 6 x 2 + 12 x 9 x 4 = 0

⇔ x=0 hoặc x=2

Ta có bảng biến thiên

vậy  f x = 2 x - 2 3 x 2 < m   ∀ x ∈ - 2 ; 0 ⇔ m > - 1 2

13 tháng 8 2020

câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi

NV
13 tháng 8 2020

Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?

Đáp án D chứ sao nữa

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

Lời giải:

Ta có: \(y=\frac{x^2-m^2+2m+1}{x-m}=x+m+\frac{2m+1}{x-m}\)

\(\Rightarrow y'=1-\frac{2m+1}{(x-m)^2}\)

Để hàm số đồng biến trên khoảng xác định của nó thì \(y\geq 0, \forall x\in \text{MXĐ}\)

\(\Leftrightarrow 1-\frac{2m+1}{(x-m)^2}\geq 0\)

\(\Leftrightarrow (x-m)^2-(2m+1)\geq 0\)

\(\Leftrightarrow x^2-2mx+(m^2-2m-1)\geq 0\)

Theo định lý về dấu của tam thức bậc 2 thì điều này xảy ra khi:

\(\Delta'=m^2-(m^2-2m-1)\leq 0\)

\(\Leftrightarrow m\leq \frac{-1}{2}\)

Đáp án D

24 tháng 6 2018

có thể giải thích vì sao ra y phẩy như vậy hông ạ

Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1 Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung A. -2 < m < 2 B. \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) C. 0...
Đọc tiếp

Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương

A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1

Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung

A. -2 < m < 2 B. \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) C. 0 < m < 2 D. -2 < m < 0

Câu 3 : Có bao nhiêu số nguyên m sao cho hàm số y = \(\frac{1}{3}x^3-2x^2+mx\) đạt cực đại tại hai điểm \(x_1\) , \(x_2\)\(x^2_1+x^2_2< 14\) ?

A. 2 B. 1 C. Vô số D. 4

Câu 4 : Tìm điều kiện m để đồ thị hàm số \(y=mx^4+\left(m-3\right)x^2+1\) có 3 điểm cực trị

A. 0 < m < 3 B. m < 0 C. m > 3 D. \(\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\)

Câu 5 : Tìm m sao cho đồ thị hàm số y = \(x^4-2mx^2+3\) có 3 điểm cực trị tạo thành 1 tam giác đều

A. \(\sqrt{3}\) B. \(\sqrt[3]{3}\) C. 1 D. 2

Câu 6 : Tìm điều kiện m sao cho đồ thị hàm số y = \(x^4+2mx^2-3\) có 3 điểm cực trị tạo thành 1 tam giác có diện tích nhỏ hơn \(9\sqrt{3}\)

A. \(m>\sqrt{3}\) B. \(m< \sqrt{3}\) C. \(0< m< \sqrt{3}\) D. \(0< m< 1\)

7
AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Câu 2:

$y'=-3x^2+6x+(m-2)=0$

Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$

Hai điểm cực trị cùng dương khi:

\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)

Từ $(1);(2)\Rightarrow -1< m< 2$

Đáp án C.

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Câu 2:

Để đths có 2 điểm cực trị thì trước tiên:

$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$

Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$

Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$

$\Leftrightarrow m^2-4< 0$

$\Leftrightarrow -2< m< 2$

Đáp án A.

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

NV
13 tháng 8 2020

5.

\(y'=1-\frac{4}{\left(x-3\right)^2}=0\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1< 3\left(l\right)\end{matrix}\right.\)

BBT:

Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Từ BBT ta có \(y_{min}=y\left(5\right)=7\)

\(\Rightarrow m=7\)

NV
13 tháng 8 2020

3.

\(y'=-2x^2-6x+m\)

Hàm đã cho nghịch biến trên R khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\Delta'=9+2m\le0\)

\(\Rightarrow m\le-\frac{9}{2}\)

4.

\(y'=x^2-mx-2m-3\)

Hàm đồng biến trên khoảng đã cho khi và chỉ khi \(y'\ge0;\forall x>-2\)

\(\Leftrightarrow x^2-mx-2m-3\ge0\)

\(\Leftrightarrow x^2-3\ge m\left(x+2\right)\Leftrightarrow m\le\frac{x^2-3}{x+2}\)

\(\Leftrightarrow m\le\min\limits_{x>-2}\frac{x^2-3}{x+2}\)

Xét \(g\left(x\right)=\frac{x^2-3}{x+2}\) trên \(\left(-2;+\infty\right)\Rightarrow g'\left(x\right)=\frac{x^2+4x+3}{\left(x+2\right)^2}=0\Rightarrow x=-1\)

\(g\left(-1\right)=-2\Rightarrow m\le-2\)

19 tháng 4 2016

Ta có : \(y'=4x^3-4\left(m-1\right)x\)

           \(y'=0\Leftrightarrow4x^3-4\left(m-1\right)x=0\Leftrightarrow x\left[x^2-\left(m-1\right)\right]=0\)

Trường hợp 1 : nếu \(m-1\le0\Leftrightarrow m\le1\), hàm số đồng biến trên khoảng \(\left(0;+\infty\right)\), vậy \(m\le1\) thỏa mãn yêu cầu bài toán

Trường hợp 2 : nếu \(m-1>0\Leftrightarrow m>1\)hàm số đồng biến trên khoảng \(\left(-\sqrt{m-1};0\right)\) và \(\left(\sqrt{m-1};+\infty\right)\)

Để hàm số đồng biến trên khoảng (1;3) thì \(\left(\sqrt{m-1}\le1\Leftrightarrow m\le2\right)\)

Vậy hàm số đồng biến trên khoảng (1;3) \(\Leftrightarrow m\in\left(-\infty;2\right)\)

 
 

 

Chọn A

19 tháng 4 2016

Ta có \(y'=-\left(m-1\right)x^2+2\left(m+2\right)+3m\) \(\Rightarrow\) Hàm đồng biến trên khoảng \(\left(-\infty;-2\right)\Leftrightarrow y'\ge0,x\in\left(-\infty;-2\right)\)(*)

Vì y'(x) liên tục tại x = -2 nên (*) \(\Leftrightarrow y'\ge0;\)

và mọi x thuộc (-\(-\infty;2\) ] (*)

\(\Leftrightarrow-\left(m-1\right)x^2+2\left(m+2\right)x+3m\ge0\), mọi x thuộc (-\(-\infty;2\) ]

\(\Leftrightarrow m\left(-x^2+2x+3\right)\ge-x^2-4x\), mọi x thuộc (-\(-\infty;2\) ]\(\Leftrightarrow m\le g\left(x\right)\), mọi x thuộc (-\(-\infty;2\) ] (Trong đó \(g\left(x\right)=\frac{-x^2-4x}{-x^2+2x+3}\))

\(\Leftrightarrow m\le Min_{\left(-\infty;-2\right)}g\left(x\right)\)

Xét hàm số \(g\left(x\right)=\frac{-x^2-4x}{-x^2+2x+3}\) trên đoạn  (-\(-\infty;2\) ]

\(\Rightarrow g'\left(x\right)=\frac{-6\left(x^2+x+2\right)}{\left(-x^2+2x+3\right)^2}=\frac{-6\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}{\left(-x^2+2x+3\right)^2}<0\),mọi x thuộc (-\(-\infty;2\) ]

\(\Rightarrow g\left(x\right)\) là hàm số nghịch biến trên  (-\(-\infty;2\) ]

\(\Rightarrow Min_{\left(-\infty;-2\right)}g\left(x\right)=g\left(-2\right)=-\frac{4}{5}\)

Vậy \(m\le-\frac{4}{5}\) thì hàm số đồng biến trên khoảng \(\left(-\infty;-2\right)\)

13 tháng 8 2020

kết quả cuối cùng là bn vậy bạn

NV
13 tháng 8 2020

5.

\(y'=4x^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\\x=-\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(y\left(0\right)=-2\) ; \(y\left(\sqrt{2}\right)=-6\) ; \(y\left(\sqrt{3}\right)=-5\)

\(\Rightarrow M=-2\)

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Để hàm số đồng biến trên R thì:

\(y'=(m+2)x^2+2mx+1\geq 0\forall x\in\mathbb{R}\)

Theo định lý về dấu của tam thức bậc 2 thì điều này xảy ra khi :

\(\left\{\begin{matrix} m+2> 0\\ \Delta'=m^2-m-2\leq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m> -2\\ (m+1)(m-2)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> -2\\ -1\leq m\leq 2\end{matrix}\right.\)

\(\Leftrightarrow -1\leq m\leq 2\)

Đáp án B