K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

Coi pt trên là PT bậc 2 ẩn $x$

Để PT có nghiệm nguyên thì

\(\Delta'=9(y-1)^2-9(3y^2+2y-35)=t^2(t\in\mathbb{N})\)

$\Leftrightarrow -18y^2-36y+324=t^2$

$\Leftrightarrow t^2+18(y+1)^2=342$

Thấy rằng $18(y+1)^2=342-t^2\leq 342\Rightarrow (y+1)^2\leq 19$

$\Rightarrow -5< y+1< 5(1)$

Mặt khác: $t^2=342-18(y+1)^2\vdots 2\Rightarrow t\vdots 2\Rightarrow t^2\vdots 4$

$\Rightarrow 18(y+1)^2=342-t^2$ chia hết cho 2 nhưng không chia hết cho 4

$\Rightarrow y+1$ lẻ $(2)$

Từ $(1);(2)\Rightarrow y+1\in\left\{-3;-1; 1;3\right\}$

Nếu $y+1=\pm 3\Rightarrow t^2=180\Rightarrow t=5\sqrt{6}\not\in\mathbb{N}$ (loại)

Nếu $y+1=1\Rightarrow y=0$. Thay vào PT ban đầu:

$9x^2-6x-35=0$. PT này không có nghiệm nguyên $x$ (loại)

Nếu $y+1=-1\Rightarrow y=-2$. Thay vào PT ban đâu:

$9x^2-18x-27=0\Rightarrow x=3$ hoặc $x=-1$

Vậy.....

30 tháng 3 2020

Có một cách khác khó nghĩ hơn:

Từ pt ban đầu, ta có:

\(9x^2+6x\left(y-1\right)+\left(y-1\right)^2+2y^2+4y+2=38\)

\(\Leftrightarrow\left(3x+y-1\right)^2+2\left(y+1\right)^2=38\)

x, y nguyên nên "dễ" để tìm ra các cặp số thỏa mãn như sau:

\(\left\{{}\begin{matrix}\left(3x+y-1\right)^2=36\\2\left(y+1\right)^2=2\end{matrix}\right.\)

Từ đó suy ra \(y=\pm1\), và từ đó suy ra x

20 tháng 3 2017

bạn hỏi Gemini đi anh ý biết đấy

20 tháng 3 2017

k minh di mink giai cho de lam

18 tháng 8 2019

Ta có \(xy\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)

<=>\(x\left(x^2y^3-2x^2y-y+4y^2+2\right)=1\)

=> \(x^2y^3-2x^2y-y+4y^2+2=\frac{1}{x}\)

Do VT là số nguyên với x,y nguyên

=> \(\frac{1}{x}\)nguyên => \(x=\pm1\)

\(x=1\)=> \(y^3-3y+4y^2+1=0\)( không có nghiệm nguyên)

+ x=-1

=> \(y^3-3y+4y^2+3=0\)( không có nghiệm nguyên )

=> PT vô nghiệm 

Vậy PT vô nghiệm 

17 tháng 10 2020

\(9x^2+3y^2+6xy-6x+2y-35=0\)

\(\Leftrightarrow\left(9x^2+6xy+y^2\right)-2\left(3x+y\right)+1+2y^2+4y+2=38\)

\(\Leftrightarrow\left(3x+y-1\right)^2+2\left(y+1\right)^2=38\)(*)

\(\Rightarrow\left(3x+y-1\right)^2=38-2\left(y+1\right)^2\le38\)

\(\Rightarrow-\sqrt{38}\le3x+y-1\le\sqrt{38}\)

Từ (*) suy ra 3x + y - 1 chẵn mà 3x + y - 1 nguyên nên \(3x+y-1\in\left\{\pm6;\pm4;\pm2;0\right\}\)

* Nếu \(3x+y-1=\pm6\)thì \(2\left(y+1\right)^2=2\Rightarrow y+1=\pm1\Rightarrow\orbr{\begin{cases}y=-2\\y=0\end{cases}}\)

Th1: \(3x+y-1=6\)

+) \(y=-2\Rightarrow x=3\)

+) \(y=0\Rightarrow x=\frac{7}{3}\left(L\right)\)

Th2: \(3x+y-1=-6\)

+) \(y=-2\Rightarrow x=-1\)

+) \(y=0\Rightarrow x=\frac{-5}{3}\left(L\right)\)

* Nếu \(3x+y-1=\pm4\)thì \(2\left(y+1\right)^2=22\left(L\right)\)

* Nếu \(3x+y-1=\pm2\)thì \(2\left(y+1\right)^2=34\left(L\right)\)

* Nếu 3x + y - 1 = 0 thì \(2\left(y+1\right)^2=38\left(L\right)\)

Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x,y\right)\in\left\{\left(3;-2\right);\left(-1;-2\right)\right\}\)

7 tháng 1 2019

i will chịu

15 tháng 11 2019

Xét phương trình 1 ta có:

\(9x^3+2x+\left(y-1\right)\sqrt{1-3y}=0\)

\(\Leftrightarrow27x^3+6x+\left(3y-3\right)\sqrt{1-3y}=0\)

Đặt \(\hept{\begin{cases}3x=a\\\sqrt{1-3y}=b\end{cases}}\)

\(\Rightarrow a^3+2a-b^3-2b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+2\right)=0\)

\(\Leftrightarrow a=b\)

Làm nốt

19 tháng 3 2020

ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên

\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)

từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được

\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)

=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)

=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)

zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)

=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)

mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)

zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0

zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)

zới y=2 , m=1 thì ta tính đc x=1

zới y=3 , m=1 thì ta tính đc x=-1

zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)