Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Delta'=1-m>0\Rightarrow m< 1\)
Để pt có 2 nghiệm t/m đề bài
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2< 4\end{matrix}\right.\) \(\Rightarrow0< m< 1\)
2. Để pt có 2 nghiệm pb
\(\left\{{}\begin{matrix}m\ne2\\\Delta'=m^2-\left(m-2\right)\left(m+3\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m< 6\end{matrix}\right.\)
Để 2 nghiệm đều dương: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m}{m-2}>0\\x_1x_2=\frac{m+3}{m-2}>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -3\end{matrix}\right.\)
Kết hợp lại: \(\left[{}\begin{matrix}2< m< 6\\m< -3\end{matrix}\right.\)
3. Đặt \(f\left(x\right)=\left(m-3\right)x^2+\left(m-1\right)x+m\)
Để pt có 2 nghiệm thỏa mãn đề bài
\(\Leftrightarrow\left(m-3\right).f\left(2\right)< 0\)
\(\Leftrightarrow\left(m-3\right)\left(7m-14\right)< 0\Rightarrow2< m< 3\)
\(3x^2-2\left(m+5\right)x-m^2+2m+8\le0\)
Nếu \(m>-\frac{1}{2}\)
\(pt\Leftrightarrow\frac{-m+4}{3}\le x\le m+2\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}\frac{-m+4}{3}\le-1\\m+2\ge1\end{matrix}\right.\Rightarrow m\ge7\)
Nếu \(m< -\frac{1}{2}\)
\(pt\Leftrightarrow m+2\le x\le\frac{-m+4}{3}\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}\frac{-m+4}{3}\ge1\\m+2\le-1\end{matrix}\right.\Rightarrow m\le-3\)
Nếu \(m=-\frac{1}{2}\Rightarrow x=\frac{3}{2}\)
Vậy \(m\le-3;m\ge7\)
Chọn B