Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bunhiacopxki:
\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Tương tự: \(\dfrac{bc}{b^2+ca+ab}\le\dfrac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\)
\(\dfrac{ca}{c^2+ab+bc}\le\dfrac{ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
\(\Rightarrow VT\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\le\dfrac{a^2+c^2+c^2}{ab+bc+ca}\)
\(\Leftrightarrow ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)
Nhân phá và rút gọn 2 vế:
\(\Leftrightarrow a^3b+b^3c+c^3a\ge abc\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{a^3b+b^3c+c^3a}{abc}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)
Đúng do: \(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c\)
Em tham khảo link:Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath
Ta có bổ đề
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
ÁP DỤNG BỔ ĐỀ VÀO P ta có
\(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc.\frac{3}{abc}=3\)
Vậy P=3
Cho a,b,c khác 0 và thỏa mãn ab+bc+ca=0
Hãy tính : \(P=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
\(ab+bc+ca=0\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)(vì \(a,b,c\ne0\))
Ta có hằng đẳng thức: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
nên \(x+y+z=0\)thì \(x^3+y^3+z^3=3xyz\)
Từ đó suy ra \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
\(\Leftrightarrow\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=3\)
\(\Leftrightarrow P=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=3\)
Vì \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Suy ra \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
\(\Rightarrow b+c=2a;a+c=2b;a+b=2c\)
Bằng cách rút \(b\) từ đẳng thức thứ nhất thay vào đẳng thức thứ hai ta đễ dàng suy ra được \(a=b=c\)
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
cáh khác nè:từ
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}=\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
\(\Rightarrow P=\frac{aa+aa+aa}{a^2+a^2+a^2}=1\)
bạn dưới làm sai rồi
P=1 MỚI ĐÚNG
Xét: \(1+c^2=ab+bc+ca+c^2=\left(a+c\right)\left(b+c\right)\)
Tương tự CM được:
\(1+b^2=\left(a+b\right)\left(c+b\right)\) và \(1+a^2=\left(c+a\right)\left(b+a\right)\)
Mặt khác ta tách: \(\hept{\begin{cases}a-b=\left(a+c\right)-\left(b+c\right)\\b-c=\left(a+b\right)-\left(c+a\right)\\c-a=\left(c+b\right)-\left(a+b\right)\end{cases}}\)
Thay vào ta được:
\(Vt=\frac{\left(a+c\right)-\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}+\frac{\left(a+b\right)-\left(c+a\right)}{\left(a+b\right)\left(c+a\right)}+\frac{\left(c+b\right)-\left(a+b\right)}{\left(b+c\right)\left(a+b\right)}\)
\(=\frac{1}{b+c}-\frac{1}{c+a}+\frac{1}{c+a}-\frac{1}{a+b}+\frac{1}{a+b}-\frac{1}{b+c}\)
\(=0\)
=> đpcm
Theo đề bài: ab+bc+ca=0
=> \(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}=0\)(chia 2 vế cho abc)
<=> \(\frac{1}{c^3}+\frac{1}{b^3}+\frac{1}{a^3}=3\cdot\frac{1}{abc}\)(1)
( Áp dụng tính chất x+y+z=0 suy ra \(x^3+y^3+z^3=3zxy\)- Bạn tự Cm)
Ta có: P=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\)\(\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)(2)
Từ (1)(2)=> P=abc\(\cdot3\cdot\frac{1}{abc}\)=3
Cảm ơn bạn nhiều nhóe!!!!!!!!!!!!!!