Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
=\(\sqrt{21-2\sqrt{54}}+\sqrt{6+2\sqrt{18}+3}-\sqrt{4\cdot\left(6+3\sqrt{3}\right)}\)
=\(\sqrt{18-2\sqrt{54}+3}+\sqrt{6+2\sqrt{18}+3}-\sqrt{24+12\sqrt{3}}\)
=\(\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{3}\right)^2}-\sqrt{24+2\sqrt{108}}\)
=\(\left|\sqrt{18}-\sqrt{3}\right|+\left|\sqrt{6}+\sqrt{3}\right|-\sqrt{\sqrt{18}+2\sqrt{108}+\sqrt{6}}\)
=\(\left|\sqrt{18}-\sqrt{3}\right|+\left|\sqrt{6}+\sqrt{3}\right|-\sqrt{\left(\sqrt{18}+\sqrt{6}\right)^2}\)
=\(\left|\sqrt{18}-\sqrt{3}\right|+\left|\sqrt{6}+\sqrt{3}\right|-\left|\sqrt{18}-\sqrt{6}\right|\)
=\(\sqrt{18}-\sqrt{3}+\sqrt{6}+\sqrt{3}-\sqrt{18}-\sqrt{6}\)
= 0
Hic câu dưới bị giải nhầm nha bạn :<
\(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
=\(\sqrt{21-2\sqrt{54}}+\sqrt{6+2\sqrt{18}+3}-\sqrt{24+12\sqrt{3}}\)
=\(\sqrt{18-2\sqrt{54}+3}+\sqrt{6+2\sqrt{18}+3}-\sqrt{24+2\sqrt{108}}\)
=\(\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{3}\right)^2}-\sqrt{18+2\sqrt{108}+6}\)
=\(\sqrt{\left(\sqrt{18}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{6}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{18}+\sqrt{6}\right)^2}\)
=\(\left|\sqrt{18}-\sqrt{3}\right|+\left|\sqrt{6}+\sqrt{3}\right|-\left|\sqrt{18}+\sqrt{6}\right|\)
=\(\sqrt{18}-\sqrt{3}+\sqrt{6}+\sqrt{3}-\sqrt{18}-\sqrt{6}\)
=0
0 nhé bạn, thực ra thì tui bấm máy tính, chớ tui ms hc lớp 7 hà,
tích vs nhé
\(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
\(=3\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{6}-3\sqrt{2}-\sqrt{6}=0\)
1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)
3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)
5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)
7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
a: \(=\dfrac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
b: \(=\dfrac{\sqrt{10}\left(\sqrt{11}+\sqrt{7}\right)}{\sqrt{2}\left(\sqrt{11}+\sqrt{7}\right)}=\sqrt{\dfrac{10}{2}}=\sqrt{5}\)
c: \(=\dfrac{\sqrt{6}\left(\sqrt{7}-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{7}-\sqrt{6}\right)}=\sqrt{\dfrac{6}{3}}=\sqrt{2}\)
1) \(\dfrac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)
\(=\dfrac{9\sqrt{5}+3\sqrt{9\cdot3}}{\sqrt{5}+\sqrt{3}}\)
\(=\dfrac{9\sqrt{5}+3\cdot3\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
\(=\dfrac{9\cdot\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}\)
\(=\dfrac{9}{1}=9\)
2) \(\dfrac{\sqrt{110}+\sqrt{70}}{\sqrt{22}+\sqrt{14}}\)
\(=\dfrac{\sqrt{10}\cdot\sqrt{11}+\sqrt{10}\cdot\sqrt{7}}{\sqrt{2}\cdot\sqrt{11}+\sqrt{2}\cdot\sqrt{7}}\)
\(=\dfrac{\sqrt{10}\cdot\left(\sqrt{11}+\sqrt{7}\right)}{\sqrt{2}\cdot\left(\sqrt{11}+\sqrt{7}\right)}\)
\(=\dfrac{\sqrt{10}}{\sqrt{2}}=\sqrt{\dfrac{10}{2}}\)
\(=\sqrt{5}\)
3) \(\dfrac{\sqrt{42}-6}{\sqrt{21}-\sqrt{18}}\)
\(=\dfrac{\sqrt{6}\cdot\sqrt{7}-\sqrt{6}\cdot\sqrt{6}}{\sqrt{3}\cdot\sqrt{7}-\sqrt{3}\cdot\sqrt{6}}\)
\(=\dfrac{\sqrt{6}\cdot\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{3}\cdot\left(\sqrt{7}-\sqrt{3}\right)}\)
\(=\dfrac{\sqrt{6}}{\sqrt{3}}=\sqrt{\dfrac{6}{3}}\)
\(=\sqrt{2}\)
1: \(=\sqrt{36}=6\)
2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)
3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)
4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)