Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số lẻ bất kỳ là 2k+1 và 2a+1
\(\left(2k+1\right)^2+\left(2a+1\right)^2\)
\(=4k^2+4k+1+4a^2+4a+1\)
\(=4k^2+4a^2+4k+4a+2\) không là số chính phương
Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm
Gọi 2 số chính phương lẻ là: 2a+1; 2b+1
ĐK: a, b ϵ N
Theo bài ra, ta có
\(\left(2a+1\right)^2+\left(2b+1^2\right)\)
= \(4a^2+4a+1+4b^2+4b+1\)
= \(4\left(a^2+a+b^2+b\right)+2\)
Vì \(4\left(a^2+a+b^2+b\right)⋮4\)
\(2:4\) dư 2
⇒\(4\left(a^2+a+b^2+b\right)+2:4\) dư 2
Mà số chính phương chia 4 dư 0 hoặc 1
⇒\(\left(2a+1\right)^2+\left(2b+1\right)^2\) không phải SCP
Vậy tổng bình phương của 2 số lẻ bất kì ko là số chính phương