Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11)+... + 1/(99x101)
(1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+...+1/99-1/101) : 2
(1/3 - 1/101) : 2 = 98/303 : 2
49/303
Bạn đưa về dãy tổng
\(\frac{1}{3.5}+\frac{1}{5.7}+.....+\)
Có thể tính nhanh vì đây là dãy đặc biệt
A = 1/15 + 1/35 + 1/ 63 + 1/99 + ...+ 1/9999
A = 1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11) + ... + 1/(99 x 101)
Ax2 = 2/(3x5) + 2/(5x7) + 2/(7x9) + 2/(9x11) + ... + 2/(99 x 101)
Ax2 = 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + 1/9 – 1/11 + ...+ 1/99 – 1/101
Ax2 = 1/3 – 1/101 = 98/303
A = 98/303 : 2
A = 49/303
2/3 + 2/15 + 2/35 + 2/63 + 2/99
= 2/1×3 + 2/3×5 + 2/5×7 + 2/7×9 + 2/9×11
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11
= 1 - 1/11
= 10/11
Thử các mẫu số ta thấy
Các mẫu số có dạng x(x + 2)
Số 999 khác dạng x(x + 2)
Bạn xem lại đề
A = 1/15 + 1/35 + 1/ 63 + 1/99 + ...+ 1/9999
A = 1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11) + ... + 1/(99 x 101)
Ax2 = 2/(3x5) + 2/(5x7) + 2/(7x9) + 2/(9x11) + ... + 2/(99 x 101)
Ax2 = 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + 1/9 – 1/11 + ...+ 1/99 – 1/101
Ax2 = 1/3 – 1/101 = 98/303
A = 98/303 : 2
A = 49/303
\(=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)
\(=2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=2.\left(\frac{1}{1}-\frac{1}{11}\right)\)
\(=\frac{20}{11}\)
225
225