Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$120+x\vdots 70+x$
$\Rightarrow (70+x)+50\vdots 70+x$
$\Rightarrow 50\vdots 70+x$
$\Rightarrow x+70$ là Ư(50)$
Để $x$ lớn nhất thì $x+70$ là lớn nhất. Hay $x+70=ƯCLN(50)$
$\Rightarrow x+70=50$
$\Rightarrow x=-20$ (loại do $x$ là số tự nhiên)
Vậy không tồn tại $x$ tự nhiên thỏa mãn đề.
Bài 3
126 ⋮ x và 210 ⋮ x
⇒ x ∈ ƯC(126; 210)
Ta có:
126 = 2.3².7
210 = 2.3.5.7
⇒ ƯCLN(126; 210) = 2.3.7 = 42
⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
Mà 15 < x < 30
⇒ x = 21
Bài 4
a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(320; 480)
Ta có:
320 = 2⁶.5
480 = 2⁵.3.5
⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160
b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(360; 600)
Ta có:
360 = 2³.3².5
600 = 2³.3.5²
⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120
a)Vì 40 chia hết x, 70 chia hết x và x là số tự nhiên lớn nhất nên: x = ƯCLN (40, 70) = 10.
vì 180,84 chia hết chõ nên x thuộc ƯC(180,84)
180=2^2x3^2x5
84=2^2x3x7
ƯCLN(180,84)=2^2x3=12
ƯC(180,84)=Ư(12)={2;3;4;6;12}
Vậy A={2;3;4;6;12}
Vì x là số lớn nhất và 70⋮x; 84⋮x; 120⋮x
⇒x=ƯCLN(70,84,120)
Theo bài ra, ta có:
70=2.5.7
84=2.2.3.7=22.3.7
120=2.2.2.3.5=23.3.5
Thừa số nguyên tố chung:2
⇒ƯCLN(70,84,120)=2
⇒x=2
Vậy x=2
70 ⋮ x, 84 ⋮ x và 120 ⋮ x
⇒ x ∈ ƯC(70; 84; 120)
Mà x là số lớn nhất ⇒ x = ƯCLN(70; 84; 120)
Ta có:
\(70=2\cdot5\cdot7\)
\(84=2^2\cdot3\cdot7\)
\(120=2^3\cdot3\cdot5\)
\(\text{⇒}\) ƯLCN(70; 84; 120) \(=2\)
Vậy: x = 2