Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thấy : \(\sqrt{x}\ge0\)
\(\Rightarrow P=\dfrac{\sqrt{x}+2}{2\sqrt{x}+1}>0\)
\(\Rightarrow\left|P\right|=P\)
Ta có : \(\left|P\right|=P\ge P\)
=> P = P .
Vậy \(\forall x>0\) TMYC đè bài
ĐKXĐ: \(x>0;x\ne1\)
\(A=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2\sqrt{x}}{x\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\left(x+2\sqrt{x}\right).x.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}\right)}=\dfrac{x}{\sqrt{x}-1}\)
b.
\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\dfrac{4+2\sqrt{3}}{\sqrt{3}+1-1}=\dfrac{4+2\sqrt{3}}{\sqrt{3}}=\dfrac{6+4\sqrt{3}}{3}\)
c.
Để \(\sqrt{A}\) xác định \(\Rightarrow\sqrt{x}-1>0\Rightarrow x>1\)
Ta có:
\(\sqrt{A}=\sqrt{\dfrac{x}{\sqrt{x}-1}}=\sqrt{\dfrac{x}{\sqrt{x}-1}-4+4}=\sqrt{\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge\sqrt{4}=2\)
Dấu "=" xảy ra khi \(\sqrt{x}-2=0\Rightarrow x=4\)
\(P=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)^2}\)
\(P=-\dfrac{1}{3}\)
\(\Rightarrow\left(\sqrt{x}+3\right)^2=3\sqrt{x}+3\)
\(\Leftrightarrow x-\sqrt{x}+6=0\)
\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow x=9\left(Vì\sqrt{x}+2>0\right)\)
\(P=-\left(\dfrac{3\sqrt{x}+3}{\left(\sqrt{x}+3\right)^2}\right)=-\left(\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)^2}\right)< -3< -1\)
a: ĐKXĐ: \(x\ge2\)
b: ĐKXĐ: \(x< 5\)
c: ĐKXĐ: \(\left\{{}\begin{matrix}-3< x\le2\\x\ne-1\end{matrix}\right.\)
1) \(A=\dfrac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(2x-2\sqrt{x}\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b) \(A=\dfrac{2\sqrt{9}-1}{\sqrt{9}+1}=\dfrac{5}{4}\)
c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}< 1\Rightarrow2\sqrt{x}-1< \sqrt{x}+1\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
\(1,A=\dfrac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\\ 2,x=9\Leftrightarrow A=\dfrac{6-1}{3+1}=\dfrac{5}{4}\\ 3,A< 1\Leftrightarrow\dfrac{2\sqrt{x}-1-\sqrt{x}-1}{\sqrt{x}+1}< 0\\ \Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\Leftrightarrow\sqrt{x}-2< 0\left(\sqrt{x}+1>0\right)\\ \Leftrightarrow x< 4\Leftrightarrow0\le x< 4\)
ĐKXĐ: \(x\ge0;x\ne1\)
\(A=\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}+\dfrac{x+2}{x\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x-1-\left(x+\sqrt{x}+1\right)+x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(A=\dfrac{2}{7}\Rightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}=\dfrac{2}{7}\)
\(\Rightarrow2\left(x+\sqrt{x}+1\right)=7\sqrt{x}\)
\(\Leftrightarrow2x-5\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)
Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{x+1}-\dfrac{4-3\sqrt{x}}{x-4\sqrt{x}+4}\right):\left(\dfrac{x-\sqrt{x}}{x\sqrt{x}-2x+\sqrt{x}-2}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(x-4\sqrt{x}+4\right)+\left(3\sqrt{x}-4\right)\left(x+1\right)}{\left(x+1\right)\left(\sqrt{x}-2\right)^2}:\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-2\right)\left(x+1\right)}\)
\(=\dfrac{x\sqrt{x}-4x+4\sqrt{x}+x-4\sqrt{x}+4+3x\sqrt{x}+3\sqrt{x}-4x-4}{\left(x+1\right)\left(\sqrt{x}-2\right)^2}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(x+1\right)}{x-\sqrt{x}}\)
\(=\dfrac{4x\sqrt{x}-7x+3\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\cdot\left(4\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}-3}{\sqrt{x}-2}\)
Để A>1 thì A-1>0
\(\Leftrightarrow\dfrac{4\sqrt{x}-3-\sqrt{x}+2}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\dfrac{3\sqrt{x}-1}{\sqrt{x}-2}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-1\le0\\\sqrt{x}-2>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< x\le\dfrac{1}{9}\\x>4\end{matrix}\right.\)
\(A=\dfrac{x+2}{\sqrt{x}}.\dfrac{2\sqrt{x}}{\sqrt{x}+1}\) \(ĐK:x\ge0\)
\(=\dfrac{2\left(x+2\right)}{\sqrt{x}+1}\)
\(A=4\Leftrightarrow\dfrac{2\left(x+2\right)}{\sqrt{x}+1}=4\Leftrightarrow2\left(x+2\right)=4\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow2x+4=4\sqrt{x}+4\)
\(\Leftrightarrow\sqrt{x}=2\)
\(\Leftrightarrow x=4\)
Bài 1:
Để biểu thức nhận giá trị nguyên thì \(3\sqrt{x}+1⋮2\sqrt{x}-1\)
\(\Leftrightarrow6\sqrt{x}+2⋮2\sqrt{x}-1\)
\(\Leftrightarrow2\sqrt{x}-1\in\left\{1;-1;5\right\}\)
\(\Leftrightarrow2\sqrt{x}\in\left\{2;0;6\right\}\)
hay \(x\in\left\{4;0;36\right\}\)
<=> \(\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\) + 2 ≤ 0
<=> \(\dfrac{\sqrt{x}+3+2\sqrt{x}-2}{\sqrt{x}-1}\) ≤ 0
<=> \(\dfrac{3\sqrt{x}+1}{\sqrt{x}-1}\) ≤ 0
Mà ( \(3\sqrt{x}\) + 1 ) > 0
=> \(\sqrt{x}-1\) < 0
=> \(\sqrt{x}\) < 1
=> x ϵ [ 0 , 1 )