K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 2x-3/2+3/4=-4

=>2x-3/4=-4

=>2x=-13/4

hay x=-13/8

b: \(\left(-\dfrac{2}{3}x-\dfrac{3}{5}\right)\cdot\left(\dfrac{-3}{2}-\dfrac{10}{3}\right)=\dfrac{2}{5}\)

\(\Leftrightarrow-\dfrac{2}{3}x-\dfrac{3}{5}=\dfrac{2}{5}:\dfrac{-29}{6}=\dfrac{-2}{5}\cdot\dfrac{6}{29}=\dfrac{-12}{145}\)

=>2/3x+3/5=12/145

=>2/3x=-15/29

hay x=-45/58

c: \(\dfrac{x}{2}-\left(\dfrac{3}{5}x-\dfrac{13}{5}\right)=-\left(\dfrac{7}{10}x+\dfrac{7}{5}\right)\)

=>1/2x-3/5x+13/5=-7/10x-7/5

=>-1/10x+7/10x=-7/5-13/5

=>3/5x=-2

hay x=-2:3/5=-10/3

4 tháng 4 2020

thang nay rot vl

4 tháng 4 2020

1; = ( -4/10 + 3/10 ) : ( -2/5 + 2/3 ) = -1/10 : ( -6/15 + 10/15 ) = -1/10 : 4/15 = -1/10 . 15/4 = -15/40 = -3/8

2; = 25/2 . -5/7 + 39/4 + -3/2 . 5/7 = -125/14 + 39/4 + -15/14 = ( -125/14 + -15/14 ) + 39/4 = -10 + 39/4 = -40/4 + 39/4 = -1/4

3; = 5/52 + 35/52 + 40/52 = 40/52 + 40/52 = 80/52 = 20/13

4; = ( -39/52 + 20/52 ) . 7/2 - ( 117/52 + 32/52 ) . 7/2 = -19/52 . 7/2 - 149/52 . 7/2 = ( -19/52 + -149/52 ) . 7/2 = -168/52 .7/2 = -147/13

5; = ( 36/12 + -9/12 + 8/12 ) - ( -12/6 + -8/6 + -9/6 ) - ( 6/6 - 14/6 - 27/6 ) = 35/12 + 10/12 + 70/12 = 115/12

6; = -1/3 + -8/35 +-2/9 + -1/135 +4/5 +-4/9 +3/7 = (-1/3 + -2/9 + -4/9 ) + ( -8/35 + 4/5 + 3/7 ) + -1/135 = ( -1/3 + -2/3 ) + ( -8/35 + 28/35 + 15/35 ) + -1/135 = -1 + 1 + -1/135 = -1/135

2 tháng 4 2020

1) \(\left|x+\frac{4}{5}\right|+\frac{7}{5}=\frac{3}{5}\)

\(\Rightarrow\left|x+\frac{4}{5}\right|=\frac{3}{5}-\frac{7}{5}\)

\(\Rightarrow\left|x+\frac{4}{5}\right|=\frac{-4}{5}\)

\(x+\frac{4}{5}=\pm\frac{4}{5}\)

\(TH1:x+\frac{4}{5}=\frac{4}{5}\)

\(\Rightarrow x=\frac{4}{5}-\frac{4}{5}=0\)

\(TH2:x+\frac{4}{5}=\frac{-4}{5}\)

\(\Rightarrow x=\frac{-4}{5}-\frac{4}{5}=\frac{-8}{5}\)

Vậy x ∈ {0; \(\frac{-8}{5}\)}

2 tháng 4 2020

Hỏi đáp ToánHỏi đáp ToánHai câu cuối khó nhìn nên ko giải

6 tháng 8 2016

1)

a. \(\left(3x^2-50\right)^2=5^4\)

\(\Leftrightarrow3x^4-50=625\)

\(\Leftrightarrow3x^4=675\)

\(\Leftrightarrow x^4=225\)

\(\Leftrightarrow x=\sqrt{15}\) 

2)

a. \(\frac{\left(3^4-3^3\right)^4}{27^3}=\frac{3^{16}-3^{12}}{\left(3^3\right)^3}=\frac{3^{12}.3^4-3^{12}}{3^9}=\frac{3^{12}\left(3^4-1\right)}{3^9}\)

\(=\frac{3^{12}.80}{3^9}=3^3.80=27.80=2160\)

b. \(\frac{25^3}{\left(5^5-5^3\right)^2}=\frac{\left(5^2\right)^3}{5^{10}-5^6}=\frac{5^6}{5^6.5^4-5^6}=\frac{5^6}{5^6\left(5^4-1\right)}\)

\(=\frac{5^6}{5^6.624}=\frac{1}{624}\)

20 tháng 11 2017

a) \(\left(-\dfrac{2}{3}+\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)

\(=\left(-\dfrac{5}{21}\right):\dfrac{4}{5}+\left(\dfrac{5}{21}\right):\dfrac{4}{5}\)

\(=\left(-\dfrac{5}{21}+\dfrac{5}{21}\right):\dfrac{4}{5}\)

\(=0:\dfrac{4}{5}\)

\(=0\)

b) \(\dfrac{5}{9}:\left(\dfrac{1}{11}-\dfrac{5}{22}\right)+\dfrac{5}{9}:\left(\dfrac{1}{15}-\dfrac{2}{3}\right)\)

\(=\dfrac{5}{9}:\left(-\dfrac{3}{22}\right)+\dfrac{5}{9}:\left(-\dfrac{3}{5}\right)\)

\(=\dfrac{5}{9}:\left[\left(-\dfrac{3}{22}\right)+\left(-\dfrac{3}{5}\right)\right]\)

\(=\dfrac{5}{9}:\left(-\dfrac{81}{110}\right)\)

\(=-\dfrac{550}{729}\)

c) \(4^2.4^3:4^{10}\)

\(=\dfrac{4^5}{4^{10}}\)

\(=\dfrac{1}{4^5}\)

\(=\dfrac{1}{256}\)

d) \(\left(0,6\right)^5:\left(0,2\right)^6\)

\(=\dfrac{\left(0,2\cdot3\right)^5}{\left(0,2\right)^6}\)

\(=\dfrac{\left(0,2\right)^5\cdot3^5}{\left(0,2\right)^6}\)

\(=\dfrac{243}{0,2}\)

\(=1215\)

Mai mốt bạn đăng một lần ít thôi nha tại giờ khuya quá nên mình chỉ làm đến đây thôi =))

Bài 3: 

a: \(A=-\left(x-\dfrac{1}{3}\right)^2+\dfrac{1}{2}< =\dfrac{1}{2}\)

Dấu '=' xảy ra khi x=1/3

b: \(B=\left(x+\dfrac{2}{3}\right)^2-\dfrac{1}{3}>=-\dfrac{1}{3}\)

Dấu '=' xảy ra khi x=-2/3

26 tháng 8 2019

a

\(A=1+3+3^2+3^3+....+3^{100}\)

\(3A=3+3^2+3^3+3^4+.....+3^{101}\)

\(2A=3^{101}-1\)

\(A=\frac{3^{101}-1}{2}\)

b

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(B=1-\frac{1}{2^{99}}\)

c

\(C=5^{100}-5^{99}+5^{98}-5^{97}+....+5^2-5+1\)

\(5C=5^{101}-5^{100}+5^{99}-5^{98}+....+5^3-5^2+5\)

\(6C=5^{101}+1\)

\(C=\frac{5^{101}+1}{6}\)

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

\(\Rightarrow\frac{1}{2}B=\)\(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\)

\(\Rightarrow B-\frac{1}{2}B=\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\right]-\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{100}\right]\)

\(\Rightarrow\frac{1}{2}B=\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\Rightarrow B=\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\right].2\)