Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+2^2\geq 4x$
$y^2+2^2\geq 4y$
$2(x^2+y^2)\geq 4xy$
$\Rightarrow 3(x^2+y^2)+8\geq 4(x+y+xy)=32$
$\Rightarrow x^2+y^2\geq 8$
Vậy $P_{\min}=8$ khi $x=y=2$
rút gọn P=2/x-(x2/(x2-xy)+(x2-y2)/xy-y2/(y2-xy)):(x2-xy+y2)/(x-y)
r tìm gt P với |2x-1|=1 ; |y+1|=1/2
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
1.
\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)
\(=2x^3y^2-3x^2y^2+7x^2y\)
\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)
\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)
\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3\)
2.
\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3-y^3\)
\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3\)
\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)
\(=24xy+4x-6y-1-24xy-4x\)
\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)
\(=-6y-1\)
#Toru
\(A=x^2+y^2-xy+x-y\\ =\dfrac{1}{2}\left(2x^2+2y^2-2xy+2x-2y\right)\\ =\dfrac{1}{2}\left[\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)-2\right]\\ =\dfrac{1}{2}\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2-2\right]\\ =\dfrac{1}{2}\left(x-y\right)^2+\dfrac{1}{2}\left(x+1\right)^2+\dfrac{1}{2}\left(y-1\right)^2-1\)
Ta có: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\forall x,y\\\left(x+1\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.=>\left\{{}\begin{matrix}\dfrac{1}{2}\left(x-y\right)^2\ge0\forall x,y\\\dfrac{1}{2}\left(x+1\right)^2\ge0\forall x\\\dfrac{1}{2}\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)
\(=>A=\dfrac{1}{2}\left(x-y\right)^2+\dfrac{1}{2}\left(x+1\right)^2+\dfrac{1}{2}\left(y-1\right)^2-1\ge-1\forall x,y\)
Dấu "=" xảy ra: \(\left\{{}\begin{matrix}x=y\\x=-1\\y=1\end{matrix}\right.\Rightarrow x,y\in\varnothing\)
Vậy A k có GTNN