K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7

\(=\dfrac{11}{12}.\dfrac{12}{13}.\dfrac{13}{14}.\dfrac{14}{15}=\dfrac{11}{15}\)

 
22 tháng 7

đúng ko vậy bạn

 

20 tháng 6 2019

a,\(\frac{11}{12}-\left(\frac{5}{42}-x\right)=\frac{15}{28}-\frac{11}{12}\)

\(\Leftrightarrow\frac{11}{12}-\frac{5}{42}+x=\frac{15}{28}-\frac{11}{12}\)

\(\Leftrightarrow x=\frac{15}{28}-\frac{11}{12}-\frac{11}{12}+\frac{5}{42}\)

\(\Leftrightarrow x=\left(\frac{15}{28}+\frac{5}{42}\right)-\left(\frac{11}{12}+\frac{11}{12}\right)\)

\(\Leftrightarrow x=\frac{55}{84}-\frac{11}{6}\)

\(\Leftrightarrow x=\frac{-33}{28}\)

b, \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

27 tháng 8 2017

1^3-3^5-(-3^5)+1^64-2^9-1^36+1^15

=1+(-3^5+3^5)+1-2^9-1+1

=2-2^9

=-510

13 tháng 9 2020

a)\(\frac{7}{12}.\frac{6}{11}+\frac{7}{12}.\frac{5}{11}-2\frac{7}{12}\)

\(=\frac{7}{12}.\left(\frac{6}{11}+\frac{5}{11}\right)-\frac{31}{12}\)

\(=\frac{7}{12}-\frac{31}{12}\)

\(=-2\)

b)\(\frac{-5}{9}.\frac{-6}{13}+\frac{5}{-9}.\frac{-5}{13}-\frac{5}{9}\)

\(=\frac{5}{9}.\left(\frac{6}{13}+\frac{5}{13}-1\right)\)

\(=\frac{5}{9}.\left(\frac{11}{13}-\frac{13}{13}\right)\)

\(=\frac{5}{9}.\frac{-2}{13}\)

\(=-\frac{10}{117}\)

c)\(0,8.\frac{-15}{14}-\frac{4}{5}.\frac{13}{14}-1\frac{2}{5}\)

\(=\frac{4}{5}.\frac{-15}{14}-\frac{4}{5}.\frac{13}{14}-\frac{7}{5}\)

\(=\frac{4}{5}.\left(-\frac{15}{14}-\frac{13}{14}\right)-\frac{7}{5}\)

\(=\frac{4}{5}.\left(-2\right)-\frac{7}{5}\)

\(=\frac{-8}{5}-\frac{7}{5}\)

\(=-3\)

d)\(-75\%.\frac{6}{7}+5\%.\frac{6}{7}+\frac{7}{10}.1\frac{1}{7}\)

\(=\frac{-15}{20}.\frac{6}{7}+\frac{1}{20}.\frac{6}{7}+\frac{7}{10}.\frac{8}{7}\)

\(=\frac{6}{7}.\left(\frac{-15}{20}+\frac{1}{20}\right)+\frac{4}{5}\)

\(=\frac{6}{7}.\frac{-7}{10}+\frac{4}{5}\)

\(=-\frac{3}{5}+\frac{4}{5}\)

\(=\frac{1}{5}\)

Linz

18 tháng 9 2018

a,=\(\dfrac{8}{14}-\dfrac{1}{14}+\dfrac{5}{21}+\dfrac{3}{2}\)

=\(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{5}{21}\) =\(2+\dfrac{5}{21}\) =\(\dfrac{42}{21}+\dfrac{5}{21}\) =\(\dfrac{47}{21}\)

b,=\(\dfrac{11}{13}.\dfrac{12}{15}-\dfrac{7}{15}+\dfrac{14}{15}.\dfrac{11}{13}\)

=\(\dfrac{11}{13}.\left(\dfrac{12}{15}+\dfrac{14}{15}\right)-\dfrac{7}{15}\)

=\(\dfrac{11}{13}.\dfrac{26}{15}-\dfrac{17}{15}\) =\(\dfrac{22}{15}-\dfrac{17}{15}\) =\(\dfrac{5}{15}\) =\(\dfrac{1}{3}\)

c,=\(\left(\dfrac{3}{6}-\dfrac{2}{6}\right)^2\) =\(\left(\dfrac{1}{6}\right)^2\) =\(\dfrac{1}{36}\)

d,=câu này dễ mà

9 tháng 9 2018

a)\(-\frac{2}{5}+\frac{2}{3}x+\frac{1}{6}x=-\frac{4}{5}\Leftrightarrow\frac{5}{6}x=-\frac{2}{5}\Leftrightarrow x=-\frac{12}{25}\)
Vậy nghiệm là x = -12/25

b)\(\frac{3}{2}x-\frac{2}{5}-\frac{2}{3}x=-\frac{4}{15}\Leftrightarrow\frac{5}{6}x=\frac{2}{15}\Leftrightarrow x=\frac{4}{25}\)
Vậy nghiệm là x = 4/25

c)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)\(\Leftrightarrow x=-1\)
Vậy nghiệm là x = -1
 

9 tháng 9 2018

Cảm ơn bạnh nha. Chúc bạn buổi tối ấm =)))) <3

30 tháng 12 2018

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\)

Dễ thấy: \(\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)\ne0\Rightarrow x+2004=0\Leftrightarrow x=-2014\)

30 tháng 12 2018

x = -2014

ti-ck nha

.........

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)