K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4
456
CTVHS
13 tháng 10

Đề thiếu rồi ạ!

13 tháng 10

B  = 1 + 2 + 22 + 23 +...+ 2 (mũ bao nhiêu em ơi?)

2S = 2 + 2^2 + 2^3 + ...+ 2^64

2S + 1 = 1 + 2 + 2^2 + ... + 2^64

2S - S = 2^64 - 1

Vậy S =  2^64 - 1

DD
25 tháng 10 2021

\(A=2^2+2^3+...+2^{62}+2^{63}\)

\(2A=2^3+2^4+...+2^{63}+2^{64}\)

\(2A-A=\left(2^3+2^4+...+2^{63}+2^{64}\right)-\left(2^2+2^3+...+2^{62}+2^{63}\right)\)

\(A=2^{64}-2^2\)

29 tháng 7 2019

a, S= 1.2 + 2.3 + 3.4 + 4.5 + 99.100

   -S= 1/1 - 1/2 + ......... + 1/4 -1/5 + [-(99.100)]

      = 1/1 - 1/5 + [-(99.100)]

      = 4/5 - 99/100

      =-19/100

S  = 19/100

Vậy S = 19/100

k mk nha

29 tháng 7 2019

a) \(S=1.2+2.3+...+99.100\)

\(\Rightarrow3S=1.2.3+2.3.3+...+99.100.3\)

\(=1.2.3+2.3.\left(4-1\right)+...+99.100.\left(101-98\right)\)

\(=1.2.3+2.3.4-1.2.3+...+99.100.101-98.99.100\)

\(=99.100.101\)

\(=999900\)

\(\Rightarrow S=\frac{999900}{3}=333300\)

21 tháng 3 2017

\(\frac{x}{6}=\frac{1}{2}+\frac{1}{3}.\frac{3}{4}\)

<=> \(\frac{x}{6}=\frac{1}{2}+\frac{3}{12}\)

<=>\(\frac{x}{6}=\frac{1}{2}+\frac{1}{4}\)

<=>\(\frac{x}{6}=\frac{2}{4}+\frac{1}{4}\)

<=>\(\frac{x}{6}=\frac{3}{4}\)

<=>\(x=\frac{3}{4}.6\)

<=>\(x=\frac{9}{2}\)

kl:

21 tháng 3 2017

k minh di mink giai cho de lam

14 tháng 6 2021

a, A = 32 . 43 - 32 + 333

= 32 (43 - 1) + 333

= 9 . 63 + 333

= 567 + 333

= 900 = 302

b, B = 5 . 43 + 24 . 5 + 41

= 5 . 64 + 16 . 5 + 41

= 5 (64 + 16) + 41

= 400 + 41

= 441 = 212

21 tháng 4 2018

ở chỗ 19?16 là em viết sai thật là 19/16 ạ

21 tháng 4 2018

Mọi người trả lời nhanh giúp em với ạ

4 tháng 1 2018

Kết quả =1262 con cách lm thì mk ko pít

4 tháng 1 2018

Thank you

5 tháng 1 2017

theo mình nghĩ là như th61 này

\(2\cdot2^{99}-2^{99}=2^{99}\)

\(2^{99}=2\cdot2^{98}\)

\(2\cdot2^{98}-2^{98}=2^{98}\)

vậy tức là \(2^n-2^{n-1}=2^{n-1}\)

đến cuối bạn sẽ có \(2^3-2^2=4\)

4-2-1=1

11 tháng 12 2017

Vì đề con viết thiếu nên cô đã sửa nhé.

Ta có \(S=1-2+2^2-2^3+...-2^{2017}\)

\(\Rightarrow4S=2^2.S=2^2\left(1-2+2^2-2^3+...-2^{2017}\right)\)

\(\Rightarrow4S=2^2-2^3+2^4-2^5+...-2^{2017}+2^{2018}-2^{2019}\)

\(\Rightarrow4S=S+1+2^{2018}-2^{2019}\)

\(\Rightarrow3S=1+2^{2018}-2^{2019}\)

\(\Rightarrow M=3S-2^{2018}=1-2^{2019}\)