K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10

\(\dfrac{2^7.9^3}{6^3.8^2}\\ =\dfrac{2^7.\left(3^2\right)^3}{\left(2.3\right)^3.\left(2^3\right)^2}\\ =\dfrac{2^7.3^{2.3}}{2^3.3^3.2^{3.2}}\\ =\dfrac{2^7.3^6}{2^3.3^3.2^6}\\ =\dfrac{2^7.3^6}{2^9.3^3}\\ =\dfrac{1}{2^2}\\ =\dfrac{1}{4}\)

17 tháng 6 2021

a) \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)

a) \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{2^7.3^6}{2^{11}.3^5}=\dfrac{3}{2^4}=\dfrac{3}{16}\) 

b) \(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\dfrac{3^5}{0,2}=1215\)

27 tháng 7 2018

a. = 1/20 + 5 - 1/2

= 101/20 - 1/2

= 91/20

b. = ( 6/15 - 3/5) - ( 7/8 + 2/16) + 3

= -1/5 - 1 + 3

= 9/5

c. = 15/7 . ( 3/5 - 8/5)

= 15/7 . ( -1)

= - 15/7

e. = -14/9 - 3/9

= -17/9

f. = 19/21 . ( 15/17 + 2/17) + 13/21

= 19/21 . 1 + 13/21

= 32/21

g. = 43/12 : 2 + 5/24

= 43/24 + 5/24

= 2

22 tháng 6 2021

\(=\dfrac{3}{16}\)= 0.1875

22 tháng 6 2021

=0.1875

29 tháng 7 2023

\(\dfrac{2^7\cdot9^3}{6^5\cdot8^2}\)

\(=\dfrac{2^7\cdot\left(3^2\right)^3}{2^5\cdot3^5\cdot\left(2^3\right)^2}\)

\(=\dfrac{2^7\cdot3^6}{2^{11}\cdot3^5}\)

\(=\dfrac{1\cdot3}{2^4\cdot1}\)

\(=\dfrac{3}{16}\)

\(=\dfrac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)

3 tháng 8 2017

a,

\(\dfrac{4^2\cdot4^3}{2^{10}}=\dfrac{4^5}{2^{10}}=\dfrac{\left(2^2\right)^5}{2^{10}}=\dfrac{2^{10}}{2^{10}}=1\)

b,

\(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2\cdot3\right)^5}{\left(0,2\right)^5\cdot0,2}=\dfrac{\left(0,2\right)^5\cdot3^5}{\left(0,2\right)^5\cdot0,2}=\dfrac{243}{0,2}=\dfrac{243}{\dfrac{1}{5}}=243\cdot5=1215\)

c,

\(\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^6\cdot2\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)

d,

\(\dfrac{6^3+3\cdot6^2+3^3}{-13}=\dfrac{\left(2\cdot3\right)^3+3\cdot\left(2\cdot3\right)^2+3^3}{-13}=\dfrac{2^3\cdot3^3+3\cdot2^2\cdot3^2+3^3}{-13}=\dfrac{2^3\cdot3^3+2^2\cdot3^3+3^3}{-13}\dfrac{3^3\left(2^3+2^2+1\right)}{-13}=\dfrac{3^3\cdot13}{-13}=-3^3=-27\)

13 tháng 7 2017

a, \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.2^8.5^4}{5^{10}.2^{10}}=\dfrac{1}{5^2.2^2}=\dfrac{1}{25.4}=\dfrac{1}{100}\)

b, \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)

c, \(\dfrac{45^{10}.5^{20}}{75^5}=\dfrac{5^{10}.3^{20}.5^{20}}{3^5.5^{10}}=5^{20}.3^{15}\)

d, \(\left(0,8\right)^5=\left(0,1\right)^5.8^5=\dfrac{1}{100000}.32768=0,32768\)

e, \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=3^2=9\)

d, \(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=2^{10}=1024\)

Chúc bạn học tốt!!!

13 tháng 7 2017

\(\text{a) }\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot\left(5\cdot4\right)^4}{\left(5^2\right)^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{5^8\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{25\cdot4}=\dfrac{1}{100}\)

\(\text{b) }\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{2^7\cdot3^6}{2^5\cdot2^6\cdot3^5}=\dfrac{2^7\cdot3^6}{2^{11}\cdot3^5}=\dfrac{3}{2^4}=\dfrac{3}{16}\)

\(\text{c) }\dfrac{45^{10}\cdot5^{20}}{75^5}=\dfrac{\left(5\cdot9\right)^{10}\cdot5^{20}}{\left(25\cdot3\right)^5}=\dfrac{5^{10}\cdot9^{10}\cdot5^{20}}{25^5\cdot3^5}=\dfrac{5^{10}\cdot5^{20}\cdot\left(3^2\right)^{10}}{\left(5^2\right)^5\cdot3^5}=\dfrac{5^{30}\cdot3^{20}}{5^{10}\cdot3^5}=5^{20}\cdot3^{15}\)

\(\text{d) }\left(0.8\right)^5=\left(\dfrac{8}{10}\right)^5=\left(\dfrac{4}{5}\right)^5=\dfrac{4^5}{5^5}=\dfrac{64}{3125}\)

\(\text{e) }\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\dfrac{2^{15}\cdot3^8}{2^6\cdot2^9\cdot3^6}=\dfrac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=3^2=9\)

\(f\text{) }\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)

1 tháng 10 2021

mn giúp e vs ạT^T

1 tháng 10 2021

\(a,=\dfrac{3}{2}-\dfrac{5}{6}:\dfrac{1}{4}+\sqrt{\dfrac{1}{4}-\dfrac{1}{2}}=\dfrac{3}{2}-\dfrac{10}{3}+\sqrt{\dfrac{1}{2}}=-\dfrac{11}{6}+\dfrac{\sqrt{2}}{2}=\dfrac{-33+3\sqrt{2}}{6}\)

\(b,=-\dfrac{4}{3}\cdot\dfrac{9}{2}+\dfrac{13}{12}\cdot\left(-\dfrac{8}{13}\right)=6-\dfrac{2}{3}=\dfrac{16}{3}\\ c,=\dfrac{1}{4}-\left(-\dfrac{1}{6}:4-8\cdot\dfrac{1}{16}\right)=\dfrac{1}{4}-\left(-\dfrac{1}{24}-\dfrac{1}{2}\right)\\ =\dfrac{1}{4}-\dfrac{13}{24}=-\dfrac{7}{24}\\ d,=\dfrac{3^{11}\cdot5^{11}\cdot5^7\cdot3^4}{5^{18}\cdot3^{18}}=\dfrac{1}{3^3}=\dfrac{1}{27}\)

12 tháng 8 2017

a,

\(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\\ =1\cdot\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\\ =\left(2-1\right)\cdot\dfrac{1}{2^2}+\left(2-1\right)\cdot\dfrac{1}{2^3}+...+\left(2-1\right)\cdot\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}-\dfrac{1}{2^{2006}}\\ =\dfrac{1}{2}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}}{2^{2006}}-\dfrac{1}{2^{2006}}\\ =\dfrac{2^{2005}-1}{2^{2006}}\)

b,

\(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{59\cdot61}\\ =\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\\ =\dfrac{1}{5}-\dfrac{1}{61}\\ =\dfrac{56}{305}\)

c,

\(\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{9999}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{7}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{7}{2}\cdot\dfrac{100}{101}\\ =\dfrac{350}{101}\)

12 tháng 8 2017

Đặt:

\(X=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\)

\(2X=2\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)

\(2X=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)

\(2X-X=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)\(X=\dfrac{1}{2}-\dfrac{1}{2^{2016}}\)

\(Y=\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{2}{59.61}\)

\(Y=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{59}-\dfrac{1}{61}\)

\(Y=\dfrac{1}{5}-\dfrac{1}{61}=\dfrac{56}{305}\)

\(Z=\dfrac{7}{3}+\dfrac{7}{15}+\dfrac{7}{35}+...+\dfrac{7}{9999}\)

\(Z=\dfrac{7}{1.3}+\dfrac{7}{3.5}+\dfrac{7}{5.7}+...+\dfrac{7}{99.101}\)

\(Z=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(Z=\dfrac{7}{2}\left(1-\dfrac{1}{101}\right)\)

\(Z=\dfrac{7}{2}.\dfrac{100}{101}=\dfrac{700}{202}\)

4 tháng 8 2017

a) \(\dfrac{4^2.4^3}{(2^2)^5}=\dfrac{4^2.4^3}{4^5}=\dfrac{4^3}{4^3}=1\)

b) = 1215

c) = \(\dfrac{3}{16}\)

d) = (-27)