Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
\(\left(x-1\right)\left(y+2\right)=5\)
Th1 : \(\hept{\begin{cases}x-1=1\\y+2=5\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x-1=5\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=-1\end{cases}}}\)
Ta có :
1.5=5\(\orbr{\begin{cases}x-1=1\\y+2=5\end{cases}}\orbr{\begin{cases}x=2\\3\end{cases}}\)
5.1=5 \(\orbr{\begin{cases}x-1=5\\y+2=1\end{cases}\orbr{\begin{cases}x=6\\y=-1\end{cases}}}\)
-1.-5=5 \(\orbr{\begin{cases}x-1=-1\\y+2=-5\end{cases}\orbr{\begin{cases}x=0\\y=-7\end{cases}}}\)
-5.-1=5 \(\orbr{\begin{cases}x-1=-5\\y+2=-1\end{cases}\orbr{\begin{cases}x-1=-4\\y=-3\end{cases}}}\)
Vậy (x,y)=(-4;-3),(0;-7),(6;-1),(2;3)
Lời giải:
Nếu $y\vdots 5$ thì $5^x=y^2+y+1$ chia 5 dư 1
$\Rightarrow x=0$
Khi đó: $y^2+y+1=5^0=1\Rightarrow y^2+y=0$
$\Rightarrow y(y+1)=0$. Mà $y$ là stn nên $y=0$
Nếu $y$ chia 5 dư 1. Đặt $y=5k+1$. Khi đó:
$y^2+y+1=(5k+1)^2+5k+1+1=25k^2+15k+3$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý -loại)
Nếu $y$ chia 5 dư 2. Đặt $y=5k+2$, Khi đó:
$y^2+y+1=(5k+2)^2+5k+2+1=25k^2+25k+7$ chia 5 dư 2
$\Rightarrow 5^x$ chia 5 dư 2 (vô lý)
Nếu $y$ chia 5 dư 3. Đặt $y=5k+3$, Khi đó:
$y^2+y+1=(5k+3)^2+5k+3+1=25k^2+35k+13$ chia 5 dư 3
$\Rightarrow 5^x$ chia 5 dư 3 (vô lý)
Nếu $y$ chia 5 dư 4. Đặt $y=5k+4$, Khi đó:
$y^2+y+1=(5k+4)^2+5k+4+1=25k^2+45k+21$ chia 5 dư 1
$\Rightarrow 5^x$ chia 5 dư 1 $\Rightarrow x=0$
$\Rightarrow y^2+y+1=5^x=1\Rightarrow y^2+y=0$
$\Rightarrow y(y+1)=0\Rightarrow y=0$ (do $y$ là stn). Mà $y$ chia 5 dư 4 nên ô lý.
Vậy $(x,y)=(0,0)$
Giả sử x>0.
\(\Rightarrow2^x⋮2\)
Mà \(624⋮2\)
\(\Rightarrow2^x+624⋮2\)
Mà \(5^x\)không chia hết cho 2 \(\forall x\)
=> vô lí.
=> Giả sử sai.
=> x = 0.
\(2^0+624=5^y\)
\(\Leftrightarrow5^y=625=5^4\)
\(\Leftrightarrow y=4\)
Đây là toán nâng cao chuyên đề giải phương trình nghiệm nguyên, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng lập bảng như sau:
(\(x-5\))(\(x+y-2\)) = 31
31 = 31 ⇒ Ư(31) = {-31; -1; 1; 31}
Lập bảng ta có:
Theo bảng trên ta có:
(\(x;y\)) = (-26; 27); (4; -33); (6; 27); (36; - 33)
Vậy (\(x;y\)) = (-26; 27); (4; -33); (6; 27); (36; - 33)