Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^1+2^2+2^3+2^4+2^5+2^6+2^7+...+2^{99}\)
\(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+2^7.7+...+2^{97}.7\)
\(=\left(2+2^4+2^7+...+2^{97}\right).7⋮7\)
\(\Rightarrow A⋮7\)
A = 21 +22 +23 +24 +25 +26 +27 ….+ 299
A = (21 +22 +23) +(24 +25 +26) + ….+ (297+298+299)
A = 14 + (21.23 +22.23 +23.23) + ….+ (21.296+22.296+23.296)
A = 14 + 23(21+22+23) + ...... + 296(21+22+23)
A = 14.1 + 23.14 + ....... + 296.14
A = 14.(1+23+....+296)
14 \(⋮\) 7
=> A \(⋮\) 7 (đpcm)
a: \(S=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}=-\dfrac{1}{100}\)
c: \(5S_3=5^6+5^7+...+5^{101}\)
\(\Leftrightarrow4\cdot S_3=5^{101}-5^5\)
hay \(S_3=\dfrac{5^{101}-5^5}{4}\)
d: \(S_4=7\cdot\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)
\(=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)=7\cdot\dfrac{6}{70}=\dfrac{6}{10}=\dfrac{3}{5}\)
Câu 1:
a: =>37-39+x=13-13-17
=>x-2=-17
=>x=-15
b: |x-3|+x=3
=>|x-3|=3-x
=>x-3<=0
=>x<=3
c: (x2+7)(x2-49)=0
=>(x+7)(x-7)=0
=>x=-7 hoặc x=7
Ta có:
3s1=3+32+33+34+...+350
=>3s1-s1=3+32+33+34+...+350-1-3-32-33-...-349
=>2s1=350-1
=>a1=(350-1)/2
Tính s2 tương tự như s1
ta lấy 4s2-s2 đoực kết quả s2=(450-1)/3
S1 = 1+3+32+33+34+..........+349
3S1 = 3+32+33+34+35+.........+350
3S1 - S1 = 3+32+33+34+35+.........+350 - (1+3+32+33+34+..........+349)
= 3+32+33+34+35+.........+350 - 1 - 3 - 32 - 33 - 34-..........-349
2S1 = 350 - 1
S1 =\(\frac{3^{50}-1}{2}\)
\(A=\frac{1}{2}+\frac{5}{6}+...+\frac{89}{90}=1-\frac{1}{2}+1-\frac{5}{6}+...+1-\frac{1}{90}=\left(1++...+1\right)-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\right)\)\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)=9-\left(\frac{10}{10}-\frac{1}{10}\right)=9-\frac{9}{10}=\frac{90}{10}-\frac{9}{10}=\frac{89}{10}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\)\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\)\(1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
\(\frac{-5}{6}+\frac{8}{3}+\frac{29}{-6}\le x\le\frac{-1}{2}+2+\frac{5}{2}\)
\(\Rightarrow-3\le x\le4\)
\(\Rightarrow x\in\left\{-3;-2;-1;0;1;2;3;4\right\}\)
\(\left(\frac{-2}{3}-\frac{1}{2}\right):\frac{-1}{4}\le x\le\left(\frac{-5}{6}+\frac{9}{4}:\frac{-3}{2}\right)\cdot\frac{-13}{2}\)
\(\Rightarrow\frac{14}{3}\le x\le\frac{91}{6}\)
\(\Rightarrow\frac{28}{6}\le x\le\frac{91}{6}\)
\(\Rightarrow x\in\left\{\frac{28}{6};\frac{29}{6};...;\frac{90}{6};\frac{91}{6}\right\}\)
Câu 4:
a) Ta có: \(\left|-x+8\right|\ge0\)
\(\Rightarrow A=\left|-x+8\right|-21\ge-21\)
Vậy \(MIN_A=-21\) khi x = 8
b) Ta có: \(\left|-x-17\right|+\left|y-36\right|\ge0\)
\(\Rightarrow B=\left|-x-17\right|+\left|y-36\right|+12\ge12\)
Vậy \(MIN_B=12\) khi \(x=-17;y=36\)
c) Ta có: \(-\left|2x-8\right|\le0\)
\(\Rightarrow C=-\left|2x-8\right|-35\le-35\)
Vậy \(MAX_C=-35\) khi \(x=4\)
d) Ta có: \(3\left(3x-12\right)^2\ge0\)
\(\Rightarrow D=3\left(3x-12\right)^2-37\ge-37\)
Vậy \(MIN_D=-37\) khi x = 4
e) Ta có: \(-3\left|2x+50\right|\le0\)
\(\Rightarrow E=-21-3\left|2x+50\right|\le-21\)
Vậy \(MAX_E=-21\) khi x = -25
g) \(\left(x-3\right)^2+\left|x^2-9\right|\ge0\)
\(\Rightarrow G=\left(x-3\right)^2+\left|x^2-9\right|+25\ge25\)
Vậy \(MIN_G=25\) khi x = 3
7 = 49
72x-6 = 72
2x - 6 = 2
2x = 2 + 6
2x = 8
x = 8 : 2
x = 4 . Vậy x =4
\(7^{2x-6}=49\)
\(7^{2x-6}=7^2\)
\(2x-6=2\)
\(2x=2+6\)
\(2x=8\)
\(x=8:2\)
\(x=4\)