Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thiếu vế phải rồi bạn
b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)
\(x^8+x^8+y^8+y^8+y^8+z^8+z^8+z^8\ge8\sqrt[8]{x^{16}y^{24}z^{24}}=8x^2y^3z^3\)
Tương tự: \(3x^8+2y^8+3z^8\ge8x^3y^2z^3\)
\(3x^8+3y^8+2z^8\ge8x^3y^3z^2\)
Cộng vế với vế:
\(8\left(x^8+y^8+z^8\right)\ge8\left(x^2y^3z^3+x^3y^2z^3+x^3y^3z^2\right)\)
\(\Leftrightarrow\frac{x^8+y^8+z^8}{x^3y^3z^3}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Dấu "=" xảy ra khi \(x=y=z\)
Ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{z+y+z}=9=\dfrac{18}{2}>\dfrac{18}{xyz+2}\)
*)Cách cho THCS Yahoo Hỏi & Đáp
*)Cách cho THPT
Áp dụng C-S dạng Engel \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{3\sqrt[3]{xyz}}=\frac{3}{\sqrt[3]{xyz}}\)
Vậy chứng minh \(\frac{3}{\sqrt[3]{xyz}}>\frac{18}{xyz+2}\Leftrightarrow xyz-6\sqrt[3]{xyz}+2>0\)
Đặt \(t=\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{1}{3}\Rightarrow0< t\le\frac{1}{3}\)
Hàm số \(f\left(t\right)=t^3-6t+2\) nghịch biến trên (\(0;\frac{1}{3}\)]
\(f\left(t\right)\ge f\left(\frac{1}{3}\right)=\frac{1}{27}>0\) (ĐPCM)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) ( sửa đề )
\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)
\(\Leftrightarrow3+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\ge9\)
Ta sẽ CM BĐT trên đúng bằng sử dụng Cô - Si , ta có :
\(\left\{{}\begin{matrix}\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}=2\\\dfrac{y}{z}+\dfrac{z}{y}\ge2\sqrt{\dfrac{y}{z}.\dfrac{z}{y}}=2\\\dfrac{x}{z}+\dfrac{z}{x}\ge2\sqrt{\dfrac{x}{z}.\dfrac{z}{x}}=2\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\ge6\)
\(\Leftrightarrow3+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\ge9\)
\(\Rightarrowđpcm.\)
\("="\Leftrightarrow x=y=z\)
Áp dụng bđt Cauchy, ta có:
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\sqrt{\dfrac{x^2}{y^2}\times\dfrac{y^2}{z^2}}+\sqrt{\dfrac{y^2}{z^2}\times\dfrac{z^2}{x^2}}+\sqrt{\dfrac{x^2}{y^2}\times\dfrac{z^2}{x^2}}=\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{z}{y}\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi x = y = z