Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2\ge0\forall x\in Q\)
\(y^2\ge0\forall x\in Q\)
\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)
\(\left(y-4\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)
c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)
\(\left|x-3\right|\ge0\forall x\in Q\)
\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)
a ) Ta có : 31 (x + 3) > 0
=> x + 3 > 0
=> x > 3
d)Để (x - 3)(x - 2) < 0 thì có 2 trường hợp
Th1 : \(\Leftrightarrow\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>2\end{cases}\Rightarrow2< x< 3}}\)
Th2 : \(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}\left(loại\right)}}\)
a) Ta có : (x2 + 1).(x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(\text{loại}\right)\\x=-3\end{cases}}\)
a) \(x^2+1>0\) thực tế lớn 1 không cần vì đang so sánh Với 0
=> để VT <0 cần (x-3)<0=> x<3 {âm nhân dương--> âm)
b) Lập bảng hợp lý nhất cho lớp 6
x | -VC | -7 | 4 | +VC | |
x+7 | - | 0 | + | + | + |
x-4 | - | - | - | 0 | + |
(x+7)(x-4) | + | 0 | - | 0 | + |
b) vậy x<-7 hoạc x>4 thì VT>0
c) x^2+5> 0 mọi x
=> chỉ xét x^2-16 =(x-4)(x+4)
lập bảng như (b)=> x<-4 hoac x>4
a: =>3x-6-5=2x+6
=>3x-11=2x+6
hay x=17
b: (x+5)(x2-4)=0
=>(x+5)(x+2)(x-2)=0
hay \(x\in\left\{-5;-2;2\right\}\)
c: \(\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
hay \(x\in\left\{-1;2;-2\right\}\)
d: \(\left(4-x\right)\left(x+1\right)\ge0\)
=>(x-4)(x+1)<=0
hay -1<=x<=4
a, => x+5>0;x-4>0 hoặc x+5<0;x-4<0
=> x>4 hoặc x<-5
b, Vì x-3 < x+7 => x-3<0;x+7>0
=> x<3;x>-7 => -7<x<3
c, Vì x^2+1 >0 => x+3 > 0 => x>-3
d, Vì x^2-4 > x^2-16
=> x^2-4>0;x^2-16<0
=> x^2>4;x^2<16
=> 4<x^2<16
=> 2 < = x < = 4 hoặc -4 < = x < = -2
Tk mk nha