CM CÁC HẰNG ĐẲNG THỨC ;
\(\left(A^2+B^2+C^2\right)\left(X^2+Y^2+Z^2\right)=\left(AX+BY+CZ\right)^2+\left(AY-BX\right)^2+\left(AZ-CX\right)^2+\left(BZ-CY\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`1)(a^[1/4]-b^[1/4])(a^[1/4]+b^[1/4])(a^[1/2]+b^[1/2])`
`=[(a^[1/4])^2-(b^[1/4])^2](a^[1/2]+b^[1/2])`
`=(a^[1/2]-b^[1/2])(a^[1/2]+b^[1/2])`
`=a-b`
`2)(a^[1/3]-b^[2/3])(a^[2/3]+a^[1/3]b^[2/3]+b^[4/3])`
`=(a^[1/3]-b^[2/3])[(a^[1/3])^2+a^[1/3]b^[2/3]+(b^[2/3])^2]`
`=(a^[1/3])^3-(b^[2/3])^3`
`=a-b^2`
cosα = OH¯; sinα = OK¯
Do tam giác OMK vuông tại K nên:
sin2 α + cos2 α = OK¯2 + OH¯2 = OK2 + MK2 = OM2 = 1.
Vậy sin2 α + cos2 α = 1.
Vô lí : VT có kết quả = 0 mà VP luôn >= 0
dấu "=" xẩy ra <=> a=b=0
x^2 + y^2 = (x + y +\(\sqrt{2xy}\))(x + y - \(\sqrt{2xy}\))
\(=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
\(\left(x-6\right)\left(6+x\right)=\left(x-6\right)\left(x+6\right)=x^2-6^2=x^2-36\)
VP=\(A^2X^2+B^2Y^2+C^2Z^2+A^2Y^2+B^2X^2+A^2Z^2+C^2X^2+B^2Z^2+C^2Y^2\)
=\(A^2\left(X^2+Y^2+Z^2\right)+B^2\left(X^2+Y^2+Z^2\right)+C^2\left(X^2+Y^2+Z^2\right)\)
=\(\left(X^2+Y^2+Z^2\right)\left(A^2+B^2+C^2\right)\)