K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

a) Ta có ham-so-lien-tuc = 22 +2.2 +4 = 12.

ham-so-lien-tucnên hàm số y = g(x) gián đoạn tại x0 = 2.

b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12

17 tháng 11 2023

loading...loading...loading...  

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Đề lỗi công thức toán rồi bạn. Không nhìn thấy được biểu thức hiển thị.

19 tháng 11 2023

\(\lim\limits_{x\rightarrow5}f\left(x\right)=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{2x-9}-1}{5-x}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{2x-9-1}{\sqrt{2x-9}+1}\cdot\dfrac{1}{5-x}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{2\left(x-5\right)}{-\left(x-5\right)\left(\sqrt{2x-9}+1\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{-2}{\sqrt{2x-9+1}}=\dfrac{-2}{\sqrt{10-9}+1}=-\dfrac{2}{2}=-1\)

f(5)=3

=>\(\lim\limits_{x\rightarrow5}f\left(x\right)< >f\left(5\right)\)

=>Hàm số bị gián đoạn tại x=5

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
\(\lim\limits_{x\to 3}f(x)=\lim\limits_{x\to 3}\frac{9-x^2}{3-x}=\frac{(3-x)(3+x)}{3-x}=\lim\limits_{x\to 3}(3+x)=3+3=6=f(3)\)

Do đó hàm số liên tục tại $x=3$.

18 tháng 11 2023

\(\lim\limits_{x\rightarrow3}f\left(x\right)=\lim\limits_{x\rightarrow3}\dfrac{9-x^2}{3-x}=\lim\limits_{x\rightarrow3}3+x=3+3=6\)

\(f\left(3\right)=6\)

=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=f\left(3\right)\)

=>Hàm số liên tục tại x=3

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Theo em ý kiến của bạn Nam là đúng.

Ta có: Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Hàm số \(y = g\left( x \right)\) không liên tục tại \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne g\left( {{x_0}} \right)\)

Do đó \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) + \mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne f\left( {{x_0}} \right) + g\left( {{x_0}} \right)\)

Vì vậy hàm số không liên tục tại x0.

19 tháng 11 2023

\(\lim\limits_{x\rightarrow-3}f\left(x\right)=\lim\limits_{x\rightarrow-3}\dfrac{x^2+3x}{x+3}\)

\(=\lim\limits_{x\rightarrow-3}\dfrac{x\left(x+3\right)}{x+3}=\lim\limits_{x\rightarrow-3}x=-3\)

\(f\left(-3\right)=-6-\left(-3\right)=-6+3=-3\)

Vậy: \(\lim\limits_{x\rightarrow-3}f\left(x\right)=f\left(-3\right)\)

=>Hàm số liên tục tại x=-3

19 tháng 11 2023

\(\lim\limits_{x\rightarrow-2}f\left(x\right)=\dfrac{2x^2-x-10}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{2x^2+4x-5x-10}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(x+2\right)\left(2x-5\right)}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}2x-5=2\cdot\left(-2\right)-5=-9\)

\(f\left(-2\right)=a-2\)

hàm số liên tục tại x=-2 khi a-2=-9

=>a=-7

Hàm số không liên tục tại x=-2 thì \(a-2\ne-9\)

=>\(a\ne-7\)

19 tháng 11 2023

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{2x^2-5x+3}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x-3\right)}{x-1}=\lim\limits_{x\rightarrow1}2x-3=2\cdot1-3=-1\)

f(1)=4

=>\(\lim\limits_{x\rightarrow1}f\left(x\right)< >f\left(1\right)\)

=>Hàm số bị gián đoạn tại x=1