a) Xét tính liên tục của hàm số \(y=g\left(x\right)\) tại \(x_0=2\) biết :
\(g\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^3-8}{x-2};\left(x\ne2\right)\\5;\left(x=2\right)\end{matrix}\right.\)
b) Trong biểu thức xác định \(g\left(x\right)\) ở trên, cần thay số 5 bởi số nào để hàm số liên tục tại \(x_0=2\)
a) Ta có = 22 +2.2 +4 = 12.
Vì nên hàm số y = g(x) gián đoạn tại x0 = 2.
b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12