B. Phần Hình học
Bài 1 (14/56): Cho tam giác ABC vuông tại A, có AB = 6cm; AC = 8cm.
a) Tính BC.
b) Kẻ AH vuông góc với BC, biết AH = 4,8cm. Tính BH và CH?
Bài 2 (55/57): Cho tam giác ABC vuông cân tại A, biết AB = AC = 4cm.
a) Tính BC.
b) Kẻ AD vuông góc với BC. CMR: D là trung điểm của BC.
c) Từ D kẻ DE vuông góc với AC. CMR: Tam giác AED vuông cân.
d) Tính AD.
Bài 3 (64/63): Cho đoạn thẳng AB và điểm C nằm giữa A và B. Trên cùng một nửa mặt
phẳng bờ AB vẽ hai tam giác đều ACD và BCE. Gọi M, N lần lượt là trung điểm của AE
và BD. CMR:
a) AE = BD.
b)
= CME CNB .
c) Tam giác MNC là tam giác đều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a. (Tự vẽ hình)
Áp dụng định lí Py-ta-go, ta có:
BC2= AB2 + AC2
<=> BC2= 62 + 82
<=> BC2= 100
=> BC = 10 (cm)
Bài 1
b. Áp dụng định lí Py-ta-go, ta có:
AC2 = AH2 + HC2
<=> 82 = 4,82 + HC2
<=> 64 = 23,04 + HC2
=> HC2 = 64 - 23,04
=> HC2 = 40,96
=> HC = 6,4 (cm)
=> HB = BC - HC = 10 - 6,4 = 3,6 (cm)
a: \(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
BH=4^2/5=3,2cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: ΔBAC đồng dạng với ΔBHA
=>BA/BH=BC/BA
=>BA^2=BH*BC
a: \(CB=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=4*3/5=2,4cm
BH=4^2/5=3,2cm
CD là phân giác
=>AD/AC=DB/BC
=>AD/3=DB/5=(AD+DB)/(3+5)=4/8=0,5
=>AD=1,5cm
b: Xet ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: Xét ΔBAC vuông tại A có AH là đường cao
nên AB^2=BH*BC
Bài 1:
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>BC=10(cm)
Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
=>\(\widehat{B}=90^0-37^0=53^0\)
b: Xét ΔHAB vuông tại H có HG là đường cao
nên \(AG\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AG\cdot AB=AK\cdot AC\)
a. Áp dụng định lí Pytago trong tam giác ABC ta có:
BC2 = AB2 + AC2 = 62 + 82 = 100 ⇒ BC = 10cm
a: AK=5cm
b: Xét tứ giác AMKN có
\(\widehat{AMK}=\widehat{ANK}=\widehat{NAM}=90^0\)
Do đó: AMKN là hình chữ nhật