K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

a, Vì AH là tia phân giác của ∠BAC

=> ∠BAH = ∠HAC = ∠BAC : 2

Xét △EAH vuong tại H và △FAH vuông tại H

Có: AH là cạnh chung     

     ∠EAH = ∠FAH (cmt)

=> △EAH = △FAH (cgv-gn)

=> AE = AF (2 cạnh tương ứng)

Vì M là trung điểm của BC => MB = MC = BC/2

Qua C kẻ đường thẳng song song với AB cắt MF tại D 

Ta có: CD // AB (cách vẽ) => ∠CDF = ∠AEF (2 góc đồng vị)  (1)  và ∠DCB = ∠ABC (2)

Xét △AEF có: AE = AF (cmt) => △AEF cân tại A => ∠AEF = ∠AFE  (3)

Từ (1) và (3) => ∠AFE = ∠CDF hay ∠CFD = ∠CDF

Xét △CFD có: ∠CFD = ∠CDF (cmt) => △CFD cân tại C => CF = CD

Xét △CDM và △BEM

Có: ∠DCM = ∠EBM (cmt).

           MC = MB (cmt)

      ∠CMD = ∠BME (2 góc đối đỉnh)

=> △CDM = △BEM (g.c.g)

=> CD = BE (2 cạnh tương ứng)

Mà CF = CD (cmt)

=> BE = CF

b, Ta có: AF = AC + CF  (4) và AE = AB - BE (5)

Cộng 2 vế của (4) và (5) => AF + AE = AC + CF + AB - BE

Mà AF = AE và CF = BE

=> AE + AE = AC + AB

=> 2AE = AC + AB

=> AE = (AC + AB) : 2

Ta có: BE = AB - AE (6)  và BE = CF mà CF = AF - AC  => BE = AF - AC (7)

Cộng 2 vế của (6) và (7) => BE + BE = AB - AE + AF - AC => 2BE = AB - AC (AE = AF)  => BE = (AB - AC) : 2

c, Xét △MBE có ∠MEA là góc ngoài của △ tại đỉnh E

=> ∠MEA = ∠EMB + ∠EBM  => ∠AEF = ∠BME + ∠EBM => ∠AEF = ∠BME + ∠ABC 

Xét △CFM có ∠MCA là góc ngoài của △ tại đỉnh C 

=> ∠MCA = ∠CFM + ∠CMF   => ∠ACB = ∠CFM + ∠CMF

Mà ∠CFM = ∠AEF (cmt) ; ∠CMF = ∠BME (2 góc đối đỉnh)

=> ∠ACB = ∠AEF + ∠BME  

=> ∠ACB = ∠BME + ∠ABC + ∠BME

=> 2 .  ∠BME + ∠ABC = ∠ACB

=> 2 . ∠BME = ∠ACB - ∠ABC

=> ∠BME = (∠ACB - ∠ABC) : 2 

21 tháng 3 2022

C

21 tháng 12 2021

bài 2:

ta có: AB<AC<BC(Vì 3cm<4cm<5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

15 tháng 2 2022

bài 2:

ta có: AB <AC <BC (Vì 3cm <4cm <5cm)

=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)

Bài 3:

*Xét tam giác ABC, có:

       góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)

hay góc A+60 độ +40 độ=180độ

  => góc A= 180 độ-60 độ-40 độ.

  => góc A=80 độ

Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)

        => BC>AC>AB( Các cạnh và góc đối diện trong tam giác)

HT mik làm giống bạn Dương Mạnh Quyết

Bài 1: 

a: Xét ΔABC có \(AC^2=AB^2+BC^2\)

nên ΔABC vuông tại B

b: XétΔABC có BC<AB<AC

nên \(\widehat{A}< \widehat{C}< \widehat{B}\)

30 tháng 10 2023

Xét ΔABC có \(AB^2+AC^2=BC^2\)

nên ΔABC vuông tại A

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:A.  Tam giác cân                               B. Tam giác đều      C.   Tam giác vuông                          D. Tam giác vuông cânCâu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:A. 7cm                     B. 12,5cm                     C. 5cm                  D. Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: A. Đỉnh A             B. Đỉnh B             C....
Đọc tiếp

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:

A.  Tam giác cân                               B. Tam giác đều      

C.   Tam giác vuông                          D. Tam giác vuông cân

Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:

A. 7cm                     B. 12,5cm                     C. 5cm                  D.

Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: 

A. Đỉnh A             B. Đỉnh B             C. Đỉnh C                       D. Tất cả đều sai

Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?

A.  ABM  = ACM                                   B. ABM= AMC

C.  AMB= AMC= 900                             D. AM là tia phân giác CBA

Câu  21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:

          A. cm            B. 3cm                  C. cm             D. cm

Câu 22: Cho ABC= DEF. Khi đó:                             .

 A. BC = DF                                     B. AC = DF

   C. AB = DF                                   D. góc A = góc E    

Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:

A.   PQ =5cm           B. QR= 5cm            C. PR= 5cm              D.FE= 5cm                           

Câu 24. Cho tam giác MNP cân tại M, . Khi đó,

A.          B.             C.               D.

Câu 25 : Cho ABC= MNP  biết   thì:

A. MNP vuông  tại P                                                  B. MNP vuông  tại M          

C. MNP vuông  tại N                                                  D. ABC vuông tại A

1
15 tháng 3 2022

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:

A.  Tam giác cân                               B. Tam giác đều      

C.   Tam giác vuông                          D. Tam giác vuông cân

Câu 18Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:

A. 7cm                     B. 12,5cm                     C. 5cm                  D.

Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: 

A. Đỉnh A             B. Đỉnh B             C. Đỉnh C                       D. Tất cả đều sai

Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?

A.  ABM  = ACM                                   B. ABM= AMC

C.  AMB= AMC= 900                             D. AM là tia phân giác CBA

Câu 22Cho ABC= DEF. Khi đó:                             .

 A. BC = DF                                     B. AC = DF

   C. AB = DF                                   D. góc A = góc E    

Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:

A.   PQ =5cm           B. QR= 5cm            C. PR= 5cm              D.FE= 5cm                           

18 tháng 1 2019

Câu hỏi của Anh Nguyễn Bảo - Toán lớp 5 - Học toán với OnlineMath

Em xem link ở đây nhé! Bạn @đẹp trai...@ làm đúng rồi đấy 

Bài 3: 

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

b: Ta có: ΔABD=ΔACD

nên \(\widehat{BAD}=\widehat{CAD}\)

c: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao