tam giác ABC. ở phía ngoài tam giác ABC vẽ các tam giác vuông ABD ; ACE ( vuông cân tại B, tai C). kẻ DI và EK vuông góc BC , I,K thuộc BC. chứng minh BI=CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
∠ (BAD) + ∠ (BAC) + ∠ (DAE) + ∠ (EAC) = 360 0
Lại có: ∠ (BAD) = 90 0 , ∠ (EAC) = 90 0
Suy ra: ∠ (BAC) + ∠ (DAE) = 180 0 (1)
AE // DI (gt)
⇒ ∠ (ADI) + ∠ (DAE) = 180 0 (2 góc trong cùng phía)
Từ (1) và (2) suy ra: ∠ (BAC) = ∠ (ADI)
Xét ∆ ABC và ∆ DAI có:
AB = AD ( vì tam giác ABD vuông cân).
AC = DI ( = AE)
∠ (BAC) = ∠ (ADI) ( chứng minh trên)
Suy ra: ∆ ABC = ∆ DAI (c.g.c) ⇒ IA = BC
∆ ABC = ∆ DAI (chứng minh trên) ⇒ ∠ (ABC) = ∠ A 1 (3)
Gọi giao điểm IA và BC là H.
Ta có: ∠ A 1 + ∠ (BAD) + ∠ A 2 = 180 0 (kề bù)
Mà ∠ (BAD) = 90 0 (gt) ⇒ ∠ A 1 + ∠ A 2 = 90 0 (4)
Từ (3) và (4) suy ra: ∠ (ABC)+ ∠ A 2 = 90 0
Trong ∆ AHB ta có: ∠ (AHB) + ∠ (ABC)+ ∠ A 2 = 180 0
Suy ra ∠ (AHB) = 90 0 ⇒ AH ⊥ BC hay IA ⊥ BC
Hình vẽ:
\(\Leftrightarrow\widehat{BAD}=\widehat{BAC}+\widehat{CAD}=60^0+45^0=105^0\)