cho 1 tam giác ABC vuông tại C, trong đó AC = 0,9m; BC = 1,2m. tính các tỉ số lượng giác của góc B, từ đó suy ra các tỉ số lượng giác góc A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AC = 0,9m = 9dm; BC = 1,2m = 12dm
Theo định lí Pitago, ta có:
Vì ∠A và ∠B là hai góc phụ nhau nên suy ra:
(Ghi chú: Các bạn nên đổi đơn vị như trên để việc tính toán trở nên dễ dàng hơn.)
Áp dụng định lí pytago vào Δvuông ABC có:
AB²=AC²+BC²=0,9²+1,2²=2,25
⇒AB=1,5(cm)
Có góc A và góc B phụ nhau, ta có:
sin B = cosA= AC/AB = 3/5
cos B = sin A = BC/AB = 4/5
tan B = cot A = AC/BC = 3/4
cot B = tan A = BC/AC = 4/3
Ta có: AC = 0,9m = 9dm; BC = 1,2m = 12dm
Theo định lí Pitago, ta có:
Vì ∠A và ∠B là hai góc phụ nhau nên suy ra:
Bạn tham khảo nha
sinA=cosB=0,8sinA=cosB=0,8
cosA=sinB=0,6cosA=sinB=0,6
tgA=cotgB=43≈1,33tgA=cotgB=43≈1,33
cotgA=tgB=0,75cotgA=tgB=0,75.
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại C có:
\(AB^2=AC^2+BC^2\Rightarrow AB^2=0,9^2+1,2^2=2,25\\ \Rightarrow AB=1,5\left(m\right)\)
Vì góc A và góc B là 2 góc phụ nhau nên ta có:
\(\sin B=\cos A=\frac{AC}{AB}=\frac{0,9}{1,5}=\frac{3}{5}\)
\(\cos B=sinA=\frac{BC}{AB}=\frac{1,2}{1,5}=\frac{4}{5}\)
\(tanB=cotA=\frac{AC}{BC}=\frac{0,9}{1,2}=\frac{3}{4}\)
\(cotB=tanA=\frac{BC}{AC}=\frac{1,2}{0,9}=\frac{4}{3}\)
AB = \(\sqrt{AB^2+AB^2}\) = 2.25 ( pytago )
=> AB = 1.5 (m)
Vì góc A và góc B phụ nhau, ta có:
sin B = cosA= AC/AB = 3/5
cos B = sin A = BC/AB = 4/5
tan B = cot A = AC/BC = 3/4
cot B = tan A = BC/AC = 4/3
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
\(\Delta\)ABC cân, mà AF là đường cao
=> AF là đường trung tuyến ( định lý )
=> BF=CF
Xét \(\Delta\) BFH và \(\Delta\) CFH có: \(\left\{{}\begin{matrix}BF=CF\\F_1=F_2=90^o\\FH\end{matrix}\right.\)
=> \(\Delta\) BFH = \(\Delta\) CFH (c.g.c)
=> BH=CH ( 2 cạnh tương ứng )
=> \(\Delta\) BHC là tam giác cân ( định lý )
a: Xét ΔBAI vuông tại A và ΔBEI vuông tại E có
BI chung
BA=BE
=>ΔBAI=ΔBEI
=>IA=IE
b: Xét ΔIAF vuông tại A và ΔIEC vuông tại E có
IA=IE
góc AIF=góc EIC
=>ΔIAF=ΔIEC
=>IF=IC và AF=EC
c: BA+AF=BF
BE+EC=BC
BA=BE; AF=EC
nên BF=BC
mà IF=IC
nên BI là trung trực của CF
=>BI vuông góc CF
Xét ΔBFC có BA/AF=BE/EC
nên AE//CF
Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
\(\sin\widehat{B}=\cos\widehat{A}=\dfrac{AC}{AB}=\dfrac{3}{5}\)
\(\cos\widehat{B}=\sin\widehat{A}=\dfrac{4}{5}\)
\(\tan\widehat{B}=\cot\widehat{A}=\dfrac{3}{4}\)
\(\cot\widehat{B}=\tan\widehat{A}=\dfrac{4}{3}\)