Cho tam giác ABC vuông tại A.
a) Cho biết AB = 9cm; BC =15cm. Tính AC rồi so sánh các góc của tam giác ABC.
b) Trên BC lấy điểm D sao cho BD = BA. Từ D vẽ đường thẳng vuông góc với BC cắt
AC tại E. Chứng minh: ΔEBA = ΔEBD.
c) Lấy F sao cho D là trung điểm của EF. Từ D vẽ DM vuông góc CE tại M, DN vuông góc CF tại N. Cho góc ECF = 60 độ, CD = 6cm. Tính MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)
AC = 12 cm bạn nhé
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AC^2+AB^2}=15cm\)
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
a: BC=15cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
a.
Vì ΔABC vuông tại A nên theo định lí Py - ta - go:
BC2 = AB2 + AC2
BC2 = 92 + 122
\(\Rightarrow\) BC2 = 225
\(\Rightarrow\) BC2 = \(\sqrt{225}\) = 15 cm
b. Xét ΔABC và Δ HBA:
\(\widehat{A}=\widehat{H}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔABC \(\sim\) Δ HBA (g.g)
Tam giác ABC vuông tại A áp dụng đính lý cạnh góc vuông và hình chiếu ta có::
\(AB^2=BC\cdot HB=BC\cdot\left(BC-HC\right)\)
\(\Rightarrow20^2=BC^2-BC\cdot9\)
\(\Rightarrow BC^2-9BC-400=0\)
\(\Rightarrow BC^2+16BC-25BC-400=0\)
\(\Rightarrow BC\left(BC+16\right)-25\left(BC+16\right)=0\)
\(\Rightarrow\left(BC+16\right)\left(BC-25\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}BC+16=0\\BC-25=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}BC=-16\left(ktm\right)\\BC=25\left(tm\right)\end{matrix}\right.\)
Áp dụng hệ thức đường cao và hình chiếu ta có:
\(AH^2=HC\cdot HB\Rightarrow AH=\sqrt{HC\cdot\left(BC-HC\right)}\)
\(\Rightarrow AH=\sqrt{9\cdot\left(25-9\right)}=12\left(cm\right)\)
Diện tích của tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot BC\cdot AH=\dfrac{1}{2}\cdot25\cdot12=150\left(cm^2\right)\)
a, Áp dụng Đ. L. Py-ta-go vào tg ABC vuông tại A, có:
BC2=AB2+AC2
=>BC2=92+122=81+144=225.
=>BC=15(cm)
b, Xét tg ABD và tg EBD, có:
góc ABD= góc DBE(tia phân giác)
BD chung.
góc A= góc E(=90o)
=>tg ABD= tg EBD(ch-gn)
Ta có: BC = BD + CD = 12 + 9 =21 (cm)
\(\Delta\)ABC vuông tại A
=> \(AB^2+AC^2=BC^2=21^2=441\)(1)
Áp dụng tính chất phân giác ta có:
\(\frac{AB}{AC}=\frac{BD}{DC}=\frac{9}{12}\)
=> \(\frac{AB^2}{AC^2}=\frac{81}{144}\)(2)
Từ (1) , (2) => \(\hept{\begin{cases}AB^2=\frac{3969}{25}\\AC^2=\frac{7056}{25}\end{cases}}\)( có rất nhiều cách để em ra kết quả này., có thể dùng tổng tỉ , hay thế ....)
=> \(\hept{\begin{cases}AB=\frac{63}{5}\\AC=\frac{84}{5}\end{cases}}\)