Cho hình bình hành có ABCD có AC = 8 cm ; DB = 10 cm , Hai đường chéo AC và BD tạo nhau góc 30 độ , Tính diện tích hình bình hành ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(GH=\dfrac{1}{2}EG=\dfrac{1}{2}\cdot10=5\left(cm\right)\)
Chu vi hình bình hành là:
\(2\cdot\left(10+5\right)=2\cdot15=30\left(cm\right)\)
1:
Diện tích hình thoi ABCD hay diện tích hình bình hành MNPQ là:
18 x 16 : 2 = 144 (cm2)
Chiều cao của hình bình hành MNPQ là:
144 : 9 = 16 (cm)
Đáp số: 16 cm
a: S CAB=1/2*CM*AB
S CAD=1/2*CN*AD
mà ΔCAB=ΔCAD
nên CM*AB=CN*AD
b: Xét ΔAID vuông tại I và ΔANC vuông tại N có
góc IAD chung
=>ΔAID đồng dạng với ΔANC
=>AI/AN=AD/AC
=>AI*AC=AN*AD
Xét ΔHCB vuông tại H và ΔNAC vuông tại N có
góc HCB=góc NAC
=>ΔHCB đồng dạng với ΔNAC
=>HC/NA=CB/AC
=>CB*NA=HC*AC=AD*AN
=>AD*AN+AB*AM=AC^2
Chu vi hình bình hành là : ( 15 + 8 ) x 2 = 46 ( cm ) Đ/S : 46 cm tk mình nha
Chu vi hình bình hành ABCD là:
\(\left(12+8\right)\times2=40\left(cm\right)\)
Diện tích hình bình hành ABCD là:
\(12\times6=72\left(cm^2\right)\)
Giải
Chu vi hình bình hành ABCD đó là :
\(\left(12+8\right)\times2=40\) ( cm )
Diện tích hình bình hành ABCD đó là :
\(12\times6=72\)( cm2 )
Đáp số : Chu vi : \(40\)cm ; Diện tích : \(72\)cm2
Vì hình ABCD là hình bình hành nên cạnh AD = BC = 3cm. Vì hình BMNC là hình thoi nên có các cạnh bằng nhau, do đó ta có :
BC = BM = MN = 3 cm
Chiều cao tương ứng cạnh DC của hình bình hành ABCD là :
8 : 4 = 2 (cm)
Chiều cao tương ứng cạnh DC cũng là chiều cao tương ứng cạnh NC do đó diện tích hình thoi BMNC là :
3 x 2 = 6 (cm2)
Đáp số : 6 cm2
Chu vi hình bình hành là: \(\left(12+8\right)\times2=40\)(cm)
Diện tích hình bình hành là: \(\left(12+8\right)\times6=60\)(cm^2)
Xét ΔAHB vuông tại H và ΔAMC vuông tại M có
góc HAB chung
=>ΔAHB đồng dạng với ΔAMC
=>AH/AM=AB/AC
=>AB*AM=AH*AC
Xét ΔHCB vuông tại H và ΔNAC vuông tại N có
góc HCB=góc NAC
=>ΔHCB đồng dạng với ΔNAC
=>CB/AC=HC/NA
=>CB*NA=HC*AC=AD*AN
=>AD*AN+AB*AM=AC^2