K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: DB=DC(hai cạnh tương ứng)

b) Xét ΔDBH vuông tại H và ΔDCK vuông tại K có 

DB=DC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDBH=ΔDCK(cạnh huyền-góc nhọn)

Suy ra: DH=DK(hai cạnh tương ứng)

1 tháng 2 2016

a )

xét tam giác ADB và ADC 

A B C D

góc BAD =ADC (gt)

góc ABD= góc ACD(vì ABC cân tại a)

AB=AC (vì ABC cân)

=> chúng bằng nhau (gcg)

=>BĐ=ĐC (2 cạnh tương ứng)

b)

A B C D H K

xét tam giác HBD và KDC

 goc BHD =DKC=90 

goc B=C

BD=DC(cmt)

=> chúng bằng nhau 

=>DH=DK (2 cạnh tương ứng)

c)

A B C D H K

câu này mik đag nghĩ sorry nhé

mik sẽ giải sau

1 tháng 2 2016

Cảm ơn bạn nha!! Bày mk câu c vs

 

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: BA=BH

b: Ta có: ΔBAD=ΔBHD

nên DA=DH

hay D nằm trên đường trung trực của AH(1)

Ta có: BA=BH

nên B nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra BD là đường trung trực của AH

hay BD⊥AH

12 tháng 2 2022

Mình chỉ làm câu c, d thôi nha ( vì câu a, b bạn Nguyễn Lê Phước Thịnh làm rồi)

c) Xét tam giác ECK và tam giác ECA có:

EKC=EAC=90

EC cạnh chung

ECK=ECA ( vì CE là p/g của ABC)

=>Tam giác ECK=Tam giác ECA ( ch-gn)

=>CK=CA( 2 cạnh tương ứng)

Mà AB=HB( chứng minh a)

=>CK+BH=CA+AB

=>CH+KH+BK+HK=AC+AB

=>(BK+KH+CH)+HK=AC+AB

=>BC+HK=AB+AC (ĐPCM)

d) Ta có: \(\left\{{}\begin{matrix}CK=CA\left(theo.c\right)\\BA=BH\left(theo.a\right)\end{matrix}\right.\)=>Tam giác ACK cân tại C và tam giác ABH cân tại B

=>\(\left\{{}\begin{matrix}CAK=CKA=\dfrac{180-ACB}{2}\\BAH=BHA=\dfrac{180-ABC}{2}\end{matrix}\right.\)

Có: BAH+CAK=BAK+HAK+HAC+HAK=BAK+2HAK+HAC=\(\dfrac{180-ABC}{2}+\dfrac{180-ACB}{2}\)=\(\dfrac{360-\left(ABC+ACB\right)}{2}\)

=\(\dfrac{360-90}{2}=135\)

=>BAK+2HAK+HAC=135

Mà BAK+HAC=BAC-HAK=90-HAK

=>90-HAK+2HAK=135

=>90+HAK=135

=>HAK=45

26 tháng 3 2022

undefined

15 tháng 5 2022

https://hoidapvietjack.com/q/804157/cho-tam-giac-abc-vuong-tai-a-tia-phan-giac-cuaabc-cat-ac-tai-d-tu-d-ke-dh-vuong-

 

25 tháng 3 2017

\(a.\)Xét \(\Delta ABD\)vuông tại \(A\) và \(\Delta HBD\) vuông tại \(H\)
              có:   \(AD\): cạnh chung
                       \(\widehat{ABD}=\widehat{HBD}\)    ( vì \(AD\)là tia phân giác của \(\widehat{ABH}\))
      \(\Rightarrow\)\(\Delta ABD=\Delta HBD\) (cạnh huyền - góc nhọn)
      \(\Rightarrow\) \(AD=DH\) ( 2 cạnh tương ứng)

\(b.\) Xét \(\Delta DCH\)vuông tại \(H\)có:    \(DH< DC\)(vì trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
            mà \(AD=DH\)                \(\Rightarrow\)\(AD< DC\)(đpcm)

\(c.\)Xét \(\Delta KBH\)và \(\Delta CBA\)có:    \(\widehat{BHK}=\widehat{BAC}=90^0\)     ( gt )
                                                                       \(BH=AB\)                              ( vì \(\Delta ABD=\Delta HBD\))
                                                                        \(\widehat{KBH}\): góc chung                   ( gt )
                                \(\Rightarrow\)\(\Delta KBH=\Delta CBA\) (g.c.g)
                                \(\Rightarrow\)\(BK=BC\)(2 cạnh tương ứng)
                                \(\Rightarrow\)\(\Delta KBC\)cân  tại  \(B\)

4 tháng 4 2020

a) Có \(\Delta\)ABC cân tại A (gt), AD là phân giác \(\widehat{BAC}\)(D\(\in\)BC)

=> AD là đường phân giác của \(\Delta\)ABC

Mà trong tam giác cân đường phân giác trùng với đường trung tuyến

=> D là trung điểm của BC

=> DB=DC (đpcm)

b)  Xét hai tam giác vuông ΔAKD và ΔAKD 

Ta có: AD cạnh chung

\(\widehat{CAD}=\widehat{BAD}\left(gt\right)\)

\(\widehat{AHD}=\widehat{AKD}=90^o\)
Vậy ΔAKD=ΔAKD(cạnh huyền.góc nhọn)

Vậy DK=DH (cạnh tương ứng)

Nên ΔDHK cân

c. Do ΔAHK có AK=AH nên cân 

Vậy \(\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{KAH}}{2}\)

Do ΔABC cân nên \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{KAH}}{2}\)
Nên \(\widehat{AKH}=\widehat{ACB}\) mà hai góc trên ở vị trí đồng vị nên HK//BC

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
30 tháng 4 2016

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC