K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2023

loading...  a) Do H và E đối xứng qua M (gt)

⇒ M là trung điểm HE

Tứ giác AHBE có:

M là trung điểm AB (gt)

M là trung điểm HE (cmt)

⇒ AHBE là hình bình hành

Lại có:

∠AHB = 90⁰ (AH ⊥ BC)

⇒ AHBE là hình chữ nhật

b) Do F và H đối xứng qua N

⇒ N là trung điểm của HF

Tứ giác AHCF có:

N là trung điểm AC (gt)

N là trung điểm HF (cmt)

⇒ AHCF là hình bình hành

⇒ AH = CF và AH // CF (1)

Do AHBE là hình chữ nhật (cmt)

⇒ AH // BE và AH = BE (2)

Từ (1) và (2) suy ra:

CF // BE và CF = BE

16 tháng 10 2023

cảm ơn bạn nha

18 tháng 2 2017

A B C H 7 18

Bài 2 :

Xét \(\Delta AHB\)\(\Delta AHC\) , có :

AH : cạnh chung

AB = AC ( \(\Delta\)ABC vuông cân tại A )

\(\widehat{AHB}=\widehat{AHC}=90^0\)

=> \(\Delta AHB=\Delta AHC\) ( cạnh huyền - cạnh góc vuông )

=> HB = HC ( 2 cạnh tương ứng )

mà HC = 18 cm => HB = 18 cm

=> BC = HC + HB = 18 + 18 = 36 cm

18 tháng 2 2017

3) t/g ABD đều => DAB = 60o (t/c tam giác đều)

t/g ACE đều => EAC = 60o (t/c tam giác đều)

Có: DAB + BAC = EAC + BAC = 60o + BAC

=> DAC = BAE

T/g DAC = t/g BAE (c.g.c)

=> DCA = BEA (2 góc t/ư)

T/g MCE có: MCE + MEC + EMC = 180o ( tổng 3 góc trong tam giác)

=> ACE + DAC + MEC + EMC = 180o

=> 60o + BEA + MEC + EMC = 180o

=> 60o + 60o + EMC = 180o

=> EMC = 60o

Góc BMC kề bù với EMC nên BMC = 120o

25 tháng 4 2021

xét ΔABH và ΔACH có:

\(\widehat{ACB}\)=\(\widehat{ABC}\)(ΔABC cân tại A)

\(\widehat{BAH}\)=\(\widehat{CAH}\)(AH là tia phân giác của\(\widehat{BAC}\))

AB=AC(ΔABC cân tại A)

⇒ΔABH=ΔACH(g-c-g)

xét ΔABM và ΔCEM có:

\(\widehat{AMB}\)=\(\widehat{EMC}\)(2 góc đối đỉnh)

AM=MC(M là trung điểm của AC)

BM=ME(giả thuyết)

⇒ΔABM=ΔCEM(c-g-c)

\(\widehat{BAM}\)=\(\widehat{MCE}\)(2 góc tương ứng)

⇒CE//AB(điều phải chứng minh)

\(\widehat{BAH}\)=\(\widehat{CKH}\)(2 góc sole trong)(1)

Mà \(\widehat{BAH}\)=\(\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))(2)

Từ (1) và (2) ⇒\(\widehat{CAH}\)=\(\widehat{CKH}\)

⇒ΔACK cân tại C(điều phải chứng minh)

vì AH là tia phân giác của \(\widehat{BAC}\)

Mà ΔABC cân tại A

⇒AH là đường trung tuyến

Mặc khác M là trung điểm của AC nên BM là đường trung tuyến

Mà G là giao điểm của BM và AH 

⇒G là trọng tâm của ΔABC

xét ΔABH và ΔKCH có:

BH=CH(AH là đường trung tuyến)

\(\widehat{ABH}\)=\(\widehat{KCH}\)(2 góc sole trong)

\(\widehat{AHB}\)=\(\widehat{KHC}\)=\(90^o\)

⇒ΔABH=ΔKCH(g-c-g)

Mà ΔABH=ΔACH

⇒ΔKCH=ΔACH

xét ΔAHC có:

AH+HC>AC(bất đẳng thức tam giác) 

Mà AH=3GH; AC=CK(ΔKCH=ΔACH)

⇒3GH+HC>CK(điều phải chứng minh) 

1 tháng 4 2019

a) cm tg ABM = tg ACM moi dung phai ko ban

7 tháng 5 2017

xét tam giác deb và tam giác dab có

góc bad= góc bed

bd là cạnh chung 

góc abd =góc ebd

=>tg ded =tg dab

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

\(AH=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔAHB vuông tai H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

c:Ta có \(AE\cdot AB=AF\cdot AC\)

nên AE/AC=AF/AB

Xét ΔAEF và ΔACB có

AE/AC=AF/AB

góc BAC chung

Do đo: ΔAEF đồng dạng với ΔACB

17 tháng 5 2017

Xét tam giác AHB và tam giác AHC có:

AB=AC(tam giác ABC cân tại A)

HB=HC(AH là đường trung tuyến)

AH chung

Do đó tam AHB=tam giác AHC

17 tháng 5 2017

Bạn là người đầu tiên lên mình bỏ qua nhớ lần sau giải bài của mình thì ve hình ,mình sẽ dành thật nhiều bài oán đơn giản để các bạn có thể để giải