K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 1 2022

\(\Delta=\left(m-1\right)^2+8\left(m+1\right)=\left(m+3\right)^2\ge0;\forall x\Rightarrow\) pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m-1}{2}\\x_1x_2=-\dfrac{m+1}{2}\end{matrix}\right.\)

\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=\dfrac{25}{16}\Leftrightarrow\dfrac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=\dfrac{25}{16}\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=\dfrac{25}{16}\left(x_1x_2\right)^2\)

\(\Rightarrow\left(\dfrac{m-1}{2}\right)^2+\dfrac{2\left(m+1\right)}{2}=\dfrac{25}{16}\left(\dfrac{m+1}{2}\right)^2\)

\(\Rightarrow9m^2+18m-55=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{3}\\m=-\dfrac{11}{3}\end{matrix}\right.\)

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

24 tháng 5 2022

a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}

Thay x = 2, ta có B không tồn tại

Thay x = -1, ta có B = \(\dfrac{1}{3}\)

b)ĐKXĐ:x ≠ 2,-2

Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x

Do đó không tồn tại x thỏa mãn đề bài

NV
14 tháng 3 2022

Giới hạn đã cho hữu hạn khi \(2x^2+ax+b=0\) có nghiệm \(x=1\)

\(\Rightarrow2+a+b=0\Rightarrow b=-a-2\)

Ta được: \(\lim\limits_{x\rightarrow1}\dfrac{2x^2+ax-a-2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)\left(x+1\right)+a\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(2x+2+a\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{2x+2+a}{x+1}\)

\(=\dfrac{4+a}{2}=\dfrac{1}{4}\)

\(\Rightarrow a=-\dfrac{7}{2}\Rightarrow b=\dfrac{3}{2}\)

24 tháng 6 2021

`đk:x ne +-3,x ne -2`

`B=(21/(x^2-9)-(x-4)/(3-x)-(x-1)/(3+x)):(1-1/(x+3))`

`=(21/(x^2-9)+(x-4)/(x-3)-(x-1)/(x+3)):((x+3-1)/(x+3))`

`=((21+x^2-x-12-x^2+4x-3)/((x-3)(x+3))):(x+2)/(x+3)`

`=(3x+6)/((x-3)(x+3))*(x+3)/(x+2)`

`=(3x+6)/((x-3)(x+2))`

`=3/(x-3)`

`b)|2x+1|=5`

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2(tm)\\x=-3(l)\end{array} \right.\) 

`=>B=3/(2-3)=-3`

`c)B=-3/5`

`<=>3/(x-3)=3/(-5)`

`<=>x-3=-5`

`<=>x=-2(l)`

`d)B<0`

`<=>3/(x-3)<0`

Mà `3>0`

`=>x-3<0<=>x<3`

24 tháng 6 2021

a) đk: \(x\ne\pm3\)

 \(B=\left[\dfrac{21}{\left(x-3\right)\left(x+3\right)}+\dfrac{x-4}{x-3}-\dfrac{x-1}{x+3}\right]:\left(\dfrac{x+3-1}{x+3}\right)\)

\(\left[\dfrac{21+\left(x-4\right)\left(x+3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]:\dfrac{x+2}{x+3}\)

\(\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}\)

\(\dfrac{3x+6}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+2}=\dfrac{3}{x-3}\)

b) Để \(\left|2x+1\right|=5\)

<=> \(\left[{}\begin{matrix}2x+1=5< =>x=2\left(c\right)\\2x+1=-5< =>x=-3\left(l\right)\end{matrix}\right.\)

Thay x = 2, ta có;

B = \(\dfrac{3}{2-3}=-3\)

c) Để B = \(\dfrac{-3}{5}\)

<=> \(\dfrac{3}{x-3}=\dfrac{-3}{5}\)

<=> x - 3 = -5

<=> x = -2

d) Để B < 0

<=> \(\dfrac{3}{x-3}< 0\)

<=> x - 3 < 0

<=> x < 3

1 tháng 2 2022

undefined

1 tháng 2 2022

Phương trình có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow1-m\ge0\Leftrightarrow m\le1\)

Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\) (1)

Ta có: \(\dfrac{1}{x^2}+\dfrac{1}{x^2}=1\Leftrightarrow\dfrac{x^2_1+x^2_2}{x^2_1x^2_2}=1\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=1\) (2)

Từ (1) và (2) \(\Rightarrow4-2m=m^2\Leftrightarrow m^2+2m-4=0\)

\(\Delta'=1+4=5\Rightarrow\sqrt{\Delta'}=\sqrt{5}\Rightarrow\left[{}\begin{matrix}m=-1+\sqrt{5}\left(\text{loại}\right)\\m=-1-\sqrt{5}\left(\text{nhận}\right)\end{matrix}\right.\)

Vậy \(m=-1-\sqrt{5}\)

11 tháng 10 2023

loading...  loading...