(Các bạn chỉ cần làm ý c thôi nha)
Cho hình vuông ABCD. Gọi M là trung điểm AB; N là trung điểm CD.
a) Tứ giác BMDN là hình gì? Vì sao?
b) CM: \(S_{ADM}=\dfrac{1}{4}.S_{ABCD}\)
c) Gọi trung điểm BC là P, AP cắt BN tại I. Chứng minh: DI=AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do ABCD là hình bình hành nên AD song song và bằng BC.
Lại có M, N là trung điểm AD, BC nên DM song song và bằng BN. Suy ra DMBN là hình bình hành, hay MB//DN.
Xét tam giác ADF, có:
M là trung điểm AC
ME//DF
\(\Rightarrow\) ME là đường trung bình tam giác ADF.
Vậy AE = EF.
Hoàn toàn tương tự : EF = FC.
Vậy nên AE = EF = FC.
b) DMBN là hình bình hành nên hai đường chéo DB và MN cắt nhau tại trung điểm mỗi đường.
Vậy thì O là trung điểm MN.
Lại có: AO = OC; AE = FC nên AO - AE = OC - FC hay EO = OF.
Xét tứ giác MENF có O là trung điểm hai đường chéo EF và MN nên MENF là hình bình hành.
c)
+) Để hình bình hành MENF là hình chữ nhật thì hai đường chéo MN và EF bằng nhau.
Lại có MN = AB, EF = \(\frac{AC}{3}\). Vậy hình bình hành ABCD phải có đường chéo AC = 2AB thì MENF là hình chữ nhật.
+) Để hình bình hành MENF là hình thoi thì hai đường chéo MN và EF phải vuông góc.
Vậy thì \(EF\perp MN\Rightarrow AC\perp AB\)
Vậy hình bình hành ABCD phải có đường chéo AC vuông góc với cạnh AB thì MENF là hình thoi.
+) Để hình bình hành MENF là hình vuông thì nó vừa là hình chữ nhật, vừa là hình thoi.
Vậy thì hình bình hành ABCD có đường chéo AC vuông góc với AB và AC = 2AB.
b)có AM=MC (định lý đường trug tuyến tg vuông)
suy ra tg AMC cân tại M. gọi MN cắt AC tại O
mà MO là đg cao( AO vuông góc vs AC)
suy ra MO là trug tuyến (trog tg vuông 1 đg đóng vtro các đg còn lại) suy ra AO=OC
xét tứ giác MANC có: MO=NO; AO=OC suy ra tứ giác này là hình bình hành
có MN vuông góc vsAC suy ra tứ giác này là hình thoj(dấu hiệu nhận biết)
c) có AM=MB (đg trug tyến tg vuông) suy ra tg AMB cân tại M
suy ra BE=AE(1 đg đóng vtro các đg còn lại)
suy ra EA=3cm
có AF=FC( t'c hình thoi)
suy ra AF=4cm
S hình chữ nhật EMFA là;
3 nhân 4 +12(cm2)
Gọi I là trung điểm của AB.
Giả sử đường thẳng IE cắt CD tại K1
Có: \(\frac{IA}{K_1D}=\frac{EI}{EK_1}=\frac{IB}{K_1C}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K1D = K1C, do đó K1 là trung điểm CD
Giả sử đường thẳng IF cắt CD tại K2
Có: \(\frac{IA}{K_2C}=\frac{FI}{FK_2}=\frac{IB}{K_2D}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K2C = K2D, do đó K2 là trung điểm CD
do IE và IF cùng đi qua trung điểm K của CD nên hai đường thẳng này trùng nhau
Vậy ta có đpcm