Bài 1: Cho tam giác MNP vuông tại M, MK là đường cao, MN=6,25cm; NP=10cm.
a, Tính Mk và giải tam giác vuông MKP.
b, Qua P kẻ đường thẳng d vuông góc với MP và cắt MK tại I. Tính PI và độ dài đường phân giác MQ (Q thuộc NP) của góc NMP.
Bài 2: Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Gọi I,K thứ tự là hình chiếu của H trên AB,AC.
a, Biết BH=2, HC=8. Tính AH, AB, AC.
b, Biết sinB+3cosC=1. Tính tỉ số lượng giác góc B.
c, Chứng minh: \(\frac{1}{^{HI^2}}+\frac{1}{HC^2}=\frac{1}{HK^2}+\frac{1}{HB^2}\)
Bài 3: Cho tam giác ABC có góc A=60 độ, đường cao AH và CK cắt nhau tại I.
a, Chứng minh: CH.CB=CI.CK.
b, Chứng minh: SABC = \(\frac{\sqrt{3}}{4}\).AB.AC
c, Cho góc BAH=x, góc CAH=y. Tính M=sinx.cosy+siny.cosx.