K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2017

Kéo dài MN cắt AB tại D => CA; MD là đường cao tg CBD => K là trực tâm=> BK _|_CD (1*) 

Mà AH//MD \(\Rightarrow\) \(\frac{BA}{BD}=\frac{BH}{BM}\Rightarrow\frac{2BN}{BD}=\frac{BH}{BM}\Rightarrow\frac{BN}{BD}=\frac{BH}{2BM}=\frac{BH}{BC}\Rightarrow\)NH//CD (2*) 

Từ (1*,2*) => BK _|_HN\(\Rightarrowđcpm\)

22 tháng 8 2017

bÀI LÀM

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

14 tháng 12 2023

a: Xét tứ giác ANMP có

\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)

=>ANMP là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

MN//AC

Do đó: N là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MP//AB
Do đó: P là trung điểm của AC

Xét ΔABC có

N,P lần lượt là trung điểm của AB,AC

=>NP là đường trung bình của ΔABC

=>NP//BC và NP=BC/2

=>NP//MH

Ta có: ΔHAC vuông tại H

mà HP là đường trung tuyến

nên HP=AP

mà AP=MN(ANMP là hình chữ nhật)

nên HP=MN

Xét tứ giác MHNP có MH//NP
nên MHNP là hình thang

Hình thang MHNP có MN=HP

nên MHNP là hình thang cân

10 tháng 10 2023

loading...  loading...  loading...  

loading...  

24 tháng 8 2023

A B C M N P E F H K

a/ 

\(MP\perp AC;NA\perp AC\) => MP//NA

\(MN\perp AB;PA\perp AB\) => MN//PA

=> ANMP là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có \(\widehat{A}=90^o\)

=> ANMP là hình chữ nhật (hbh có 1 góc vuông là HCN)

b/

MN//PA (cmt) => MN//AC

MB=MC (gt)

=> NA=NB (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

C/m tương tự cũng có PA=PC

Ta có

MP//NA (cmt) => MP//NB

NA=NB; PA=PC => NP là đường trung bình của tg ABC

=> NP//BC => NP//MB

=> BMPN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

c/

Xét HCN ANMP có

FM=FA (trong HCN 2 đường chéo cắt nhau tại trung điểm mỗi đường)

EM=EB (gt)

=> EF là đường trung bình của tg MAB => EF//AB

=> ABEF là hình thang

Ta có

MB=MC => AM=MB=MC=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Ta có

FM=FA=AM/2

EB=EM=BM/2

=> FA=EB

=> ABEF là hình thang cân

d/

 

 

Ta có: MN ⊥ AB

=> góc MNA = 900

MP ⊥ AC

=> góc MPA = 900

Xét tứ giác ANMP có:

góc MNA = góc MPA = góc NAP = 900

=> tứ giác ANMP là hình vuông